Solar Energy, Vol.132, 103-113, 2016
Dissecting surface clear sky irradiance bias in numerical weather prediction: Application and corrections to the New Goddard Shortwave Scheme
The New Goddard shortwave (SW) radiation scheme of the Weather Research and Forecasting (WRF) numerical weather prediction model leads to positive biases in the clear-sky downwelling SW radiation (also referred to as global horizontal irradiance, GHI). Clear sky GHI is attenuated primarily by four atmospheric constituents: (i) ozone (ii) background gases (e.g., trace gases), (iii) precipitable water and, (iv) aerosols. The effect of each constituent in the New Goddard SW scheme is isolated here by subtracting from the GHI predicted for an atmosphere that lacks one constituent, the GHI predicted for an atmosphere with all the constituents. Compared with the WRF's Rapid Radiative Transfer Model for Global Circulation Models (RRTMG), the main contributions to the clear-sky irradiance bias in the New Goddard SW scheme come from modeling issues with the absorptions by water vapor and ozone. Enhancing the absorption due to water vapor continuum and using the RRTMG's ozone profiles in the New Goddard SW scheme improved the agreement with the WRF's RRTMG predictions for both GHI and direct normal irradiance. These results are further confirmed with the REST2 radiative transfer model. (C) 2016 Elsevier Ltd. All rights reserved.