화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.41, 50-61, September, 2016
Dual-end-functionalized tin (Sn)-phyllosilicates for the esterification of oleic acid
E-mail:,
We designed dual-end-functionalized tin (Sn)-phyllosilicate, where the -SH functional groups were subsequently oxidized for .SO3H/SO4H functionalities in a Brønsted acid with/without NH2 functional groups in a Bronsted base. Dual-end-functionalized tin (Sn)-phyllosilicates [MTES:APTS = 1.0:0.11, MTES:TEOS = 1.0:0.11 and 1.0:0.43, v/v] were fabricated where the inorganic framework of Sn species can function as a Lewis acid. The Sn-phyllosilicates with dual acids were applied to esterify oleic acid and produce oleic acid-methyl-ester to test their feasibility as fatty-acid-conversion solid catalysts. In the absence of amine groups, the increase in ratio of tetraethyl orthosilicate (TEOS) to (3-mercaptopropyl)-trimethoxysilane (MTES) for the synthesis of Sn-phyllosilicates (MTES:TEOS = 1.0:0.11 and 1.0:0.43, v/v) increased the recovery of Sn-phyllosilicate in the solvent media and gradually decreased the oleic acidmethyl-ester production efficiency (%) of the oleic acid conversion. At the fixed 2.0 wt% Sn-phyllosilicate (MTES:APTS = 1.0:0.11, v/v) loading and oleic acid:MeOH weight ratio = 1:1, an 80 ℃ reaction temperature and 4 h reaction time were determined to be the optimal conditions for the oleic acidmethyl-ester production, which had ~90% oleic acid conversion efficiency. When the Sn-phyllosilicate (MTES:APTS = 1.0:0.11, v/v) loading was increased from 0.1 to 5.0 wt% at 80 ℃ and 4 h, the fatty-acid conversion efficiency (%) of oleic acid gradually increased from 39.16 to 92.23%. In contrast, Snphyllosilicate (MTES:TEOS = 1.0:0.43) had the lowest oleic acid conversion efficiency (%) but the highest catalyst recovery. In summary, this study presents a facile method to produce oleic acid conversion catalysts on an industrial scale.
  1. Gallego JC, Jaber M, Miehe-Brendle J, Marichal C, N. J. Chem., 32, 407 (2008)
  2. Chabrol K, Gressier M, Pebere N, Menu MJ, Martin F, Bonino JP, Marichal C, Brendle J, J. Mater. Chem., 20, 9695 (2010)
  3. Moscofian ASO, Pires CTGVMT, Vieira AP, Airoldi C, RSC Adv., 2, 3502 (2012)
  4. Lee YC, Choi YS, Choi M, Yang H, Liu K, Shin HJ, Appl. Clay Sci., 83-84, 474 (2013)
  5. Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT, Chem. Mater., 9, 2300 (1997)
  6. Lee YC, Jin E, Jung SW, Kim YM, Chang KS, Yang JW, Kim SW, Kim YO, Shin HJ, Sci. Rep., 3, 1292 (2013)
  7. Lee YC, Kim MI, Woo MA, Park HG, Han JI, Biosens. Bioelectron., 42, 373 (2013)
  8. Datta KKR, Achari A, Eswaramoorthy M, J. Mater. Chem. A, 1, 6707 (2013)
  9. Lee YC, Kim EJ, Ko DA, Yang JW, J. Hazard. Mater., 196, 101 (2011)
  10. Patil AJ, Mann S, J. Mater. Chem., 18, 4605 (2008)
  11. Mann S, Nat. Mater., 8(10), 781 (2009)
  12. Narayanamoorthy B, Balaji S, Appl. Clay Sci., 104, 66 (2015)
  13. Fonseca MG, Airoldi C, Thermochim. Acta, 359(1), 1 (2000)
  14. Lagadic IL, Mitchell MK, Payne BD, Environ. Sci. Technol., 35, 984 (2001)
  15. Rhee CH, Kim HK, Chang H, Lee JS, Chem. Mater., 17, 1691 (2005)
  16. Bebin P, Caravanier M, Galiano H, J. Membr. Sci., 278(1-2), 35 (2006)
  17. Lin YF, Yen CY, Hung CH, Hsiao YH, Ma CCM, J. Power Sources, 168(1), 162 (2007)
  18. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M, J. Am. Chem. Soc., 130(38), 12787 (2008)
  19. Nakajima K, Hara M, ACS Catal., 2, 1296 (2012)
  20. Li X, Jiang Y, Shuai L, Wang L, Meng L, Mu X, J. Mater. Chem., 22, 1283 (2012)
  21. Melero JA, Bautista LF, Morales G, Iglesias J, Sanchez-Vazquez R, Chem. Eng. J., 161(3), 323 (2010)
  22. Chen SY, Yokoi T, Tang CY, Jang LY, Tatsumi T, Chan JCC, Cheng S, Green Chem., 13, 2920 (2011)
  23. Karimi B, Vafaeezadeh M, Chem. Commun., 48, 3327 (2012)
  24. Yue MWQ, Wei J, Deng Y, Liu T, Che R, Tu B, Zhao D, Angew. Chem.-Int. Edit., 51, 10368 (2012)
  25. Lam MK, Lee KT, Mohamed AR, Biotechnol. Adv., 28, 500 (2010)
  26. Park JY, Kim DK, Lee JS, Bioresour. Technol., 101, S62 (2010)
  27. Alegria A, Cuellar J, Appl. Catal. B: Environ., 179, 530 (2015)
  28. Narkhede N, Patel A, Ind. Eng. Chem. Res., 52, 13637 (2013)
  29. Park JY, Park MS, Lee YC, Yang JW, Bioresour. Technol., 184, 267 (2015)
  30. Kang HG, Lee KM, Choi S, Nam B, Choi SA, Lee SC, Park JY, Lee GW, Lee HU, Lee YC, RSC Adv., 5, 63271 (2015)
  31. Minet J, Abramson S, Bresson B, Sanchez C, Montouillout V, Lequeux N, Chem. Mater., 16, 3955 (2004)
  32. Melo MA, Oliveira FJVE, Airoldi C, Appl. Clay Sci., 42, 130 (2008)
  33. Melo MA, Airoldi C, J. Chem. Soc.-Dalton Trans., 39, 10217 (2010)
  34. Lee YC, Kim M, Woo MA, Park H, Han JI, Biosens. Bioelectron., 42, 373 (2013)
  35. Kang K, Lee H, Kim M, Park S, Chang SJ, Park JH, Huh Y, Lee J, Yang M, Lee YC, Park H, J. Nanobiotechnol., 13, 88 (2015)
  36. Lee YC, Kim EJ, Ko DA, Yang JW, J. Hazard. Mater., 196, 101 (2011)
  37. Liu D, Yuan P, Liu H, Cai J, Tan D, He H, Zhu J, Chen T, Appl. Clay Sci., 80-81, 407 (2013)
  38. Firestone D, Official Methods and Recommended Practices of the AOCS, 6th ed., 2013, p. 1200.
  39. Murillo B, Sanchez A, Sebastian V, Casado-Coterillo C, de la Iglesia O, Lopez-Ram-de-Viu MP, Tellez C, Coronas J, J. Chem. Technol. Biotechnol., 89(9), 1344 (2014)
  40. Jaber M, Miehe-Brendle J, Michelin L, Delmotte L, Chem. Mater., 17, 5275 (2005)
  41. Datta K, Achari A, Eswaramoorthy M, J. Mater. Chem. A, 1, 6707 (2013)
  42. Lee YC, Huh YS, Farooq W, Han JI, Oh YK, Park JY, RSC Adv., 3, 12802 (2013)
  43. Lee YC, Huh Y, Farooq W, Han JI, Oh YK, Park JY, RSC Adv., 3, 12802 (2013)
  44. Moreno JI, Jaimes R, Gomez R, Nino-Gomez ME, Catal. Today, 172(1), 34 (2011)
  45. Sarkar A, Ghosh SK, Pramanik P, J. Mol. Catal. A-Chem., 327(1-2), 73 (2010)
  46. Mann S, Burkett S, Davis S, Fowler C, Mendelson N, Sims S, Chem. Mater., 9, 2300 (1997)
  47. Lee YC, Rengaraj A, Ryu T, Lee HU, An HR, Lee KS, Lee GW, Kim JY, Ryu J, Heo NS, Kim BG, Huh YS, RSC Adv., 6, 1324 (2016)
  48. Cho S, Yu J, Kang SK, Shih DY, J. Electron. Mater., 34, 635 (2005)
  49. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD, Chem. Mater., 12, 2448 (2000)
  50. Dufaud V, Davis ME, J. Am. Chem. Soc., 125(31), 9403 (2003)
  51. da Fonseca MG, Silva CR, Airoldi C, Langmuir, 15(15), 5048 (1999)
  52. Chen SY, Huang CY, Yokoi T, Tang CY, Huang SJ, Lee JJ, Chan JCC, Tatsumi T, Cheng S, J. Mater. Chem., 22, 2233 (2012)
  53. Burkett SL, Press A, Mann S, Chem. Mater., 9, 1071 (1997)
  54. Rubio C, Murillo B, Casado-Coterillo C, Mayoral A, Tellez C, Coronas J, Berenguer-Murcia A, Cazorla-Amoros D, Int. J. Hydrog. Energy, 39(25), 13180 (2014)
  55. Farooq W, Lee YC, Han JI, Darpito CH, Choi M, Yang JW, Green Chem., 15, 749 (2013)
  56. Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U, Appl. Catal. A: Gen., 328(2), 174 (2007)
  57. Zaki MI, Mekhemer GAH, Fouad NE, Rabee AIM, Appl. Surf. Sci., 308, 380 (2014)
  58. Stanciulescu M, Bulsink P, Caravaggio G, Nossova L, Burich R, Appl. Surf. Sci., 300, 201 (2014)
  59. Lonyi F, Valyon J, Microporous Mesoporous Mater., 47, 293 (2001)
  60. da Silva MJ, Cardoso AL, J. Catal., 203, 11 (2013)
  61. Melero JA, Bautista LF, Iglesias J, Morales G, Sanchez-Vazquez R, Wilson K, Lee AF, Appl. Catal. A: Gen., 488, 111 (2014)