Journal of Industrial and Engineering Chemistry, Vol.41, 50-61, September, 2016
Dual-end-functionalized tin (Sn)-phyllosilicates for the esterification of oleic acid
E-mail:,
We designed dual-end-functionalized tin (Sn)-phyllosilicate, where the -SH functional groups were subsequently oxidized for .SO3H/SO4H functionalities in a Brønsted acid with/without NH2 functional groups in a Bronsted base. Dual-end-functionalized tin (Sn)-phyllosilicates [MTES:APTS = 1.0:0.11, MTES:TEOS = 1.0:0.11 and 1.0:0.43, v/v] were fabricated where the inorganic framework of Sn species can function as a Lewis acid. The Sn-phyllosilicates with dual acids were applied to esterify oleic acid and produce oleic acid-methyl-ester to test their feasibility as fatty-acid-conversion solid catalysts. In the absence of amine groups, the increase in ratio of tetraethyl orthosilicate (TEOS) to (3-mercaptopropyl)-trimethoxysilane (MTES) for the synthesis of Sn-phyllosilicates (MTES:TEOS = 1.0:0.11 and 1.0:0.43, v/v) increased the recovery of Sn-phyllosilicate in the solvent media and gradually decreased the oleic acidmethyl-ester production efficiency (%) of the oleic acid conversion. At the fixed 2.0 wt% Sn-phyllosilicate (MTES:APTS = 1.0:0.11, v/v) loading and oleic acid:MeOH weight ratio = 1:1, an 80 ℃ reaction temperature and 4 h reaction time were determined to be the optimal conditions for the oleic acidmethyl-ester production, which had ~90% oleic acid conversion efficiency. When the Sn-phyllosilicate (MTES:APTS = 1.0:0.11, v/v) loading was increased from 0.1 to 5.0 wt% at 80 ℃ and 4 h, the fatty-acid conversion efficiency (%) of oleic acid gradually increased from 39.16 to 92.23%. In contrast, Snphyllosilicate (MTES:TEOS = 1.0:0.43) had the lowest oleic acid conversion efficiency (%) but the highest catalyst recovery. In summary, this study presents a facile method to produce oleic acid conversion catalysts on an industrial scale.
Keywords:Tin (Sn)-phyllosilicate;Dual-end functionalization;Bronsted acid/base;Lewis acid;Esterification
- Gallego JC, Jaber M, Miehe-Brendle J, Marichal C, N. J. Chem., 32, 407 (2008)
- Chabrol K, Gressier M, Pebere N, Menu MJ, Martin F, Bonino JP, Marichal C, Brendle J, J. Mater. Chem., 20, 9695 (2010)
- Moscofian ASO, Pires CTGVMT, Vieira AP, Airoldi C, RSC Adv., 2, 3502 (2012)
- Lee YC, Choi YS, Choi M, Yang H, Liu K, Shin HJ, Appl. Clay Sci., 83-84, 474 (2013)
- Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT, Chem. Mater., 9, 2300 (1997)
- Lee YC, Jin E, Jung SW, Kim YM, Chang KS, Yang JW, Kim SW, Kim YO, Shin HJ, Sci. Rep., 3, 1292 (2013)
- Lee YC, Kim MI, Woo MA, Park HG, Han JI, Biosens. Bioelectron., 42, 373 (2013)
- Datta KKR, Achari A, Eswaramoorthy M, J. Mater. Chem. A, 1, 6707 (2013)
- Lee YC, Kim EJ, Ko DA, Yang JW, J. Hazard. Mater., 196, 101 (2011)
- Patil AJ, Mann S, J. Mater. Chem., 18, 4605 (2008)
- Mann S, Nat. Mater., 8(10), 781 (2009)
- Narayanamoorthy B, Balaji S, Appl. Clay Sci., 104, 66 (2015)
- Fonseca MG, Airoldi C, Thermochim. Acta, 359(1), 1 (2000)
- Lagadic IL, Mitchell MK, Payne BD, Environ. Sci. Technol., 35, 984 (2001)
- Rhee CH, Kim HK, Chang H, Lee JS, Chem. Mater., 17, 1691 (2005)
- Bebin P, Caravanier M, Galiano H, J. Membr. Sci., 278(1-2), 35 (2006)
- Lin YF, Yen CY, Hung CH, Hsiao YH, Ma CCM, J. Power Sources, 168(1), 162 (2007)
- Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M, J. Am. Chem. Soc., 130(38), 12787 (2008)
- Nakajima K, Hara M, ACS Catal., 2, 1296 (2012)
- Li X, Jiang Y, Shuai L, Wang L, Meng L, Mu X, J. Mater. Chem., 22, 1283 (2012)
- Melero JA, Bautista LF, Morales G, Iglesias J, Sanchez-Vazquez R, Chem. Eng. J., 161(3), 323 (2010)
- Chen SY, Yokoi T, Tang CY, Jang LY, Tatsumi T, Chan JCC, Cheng S, Green Chem., 13, 2920 (2011)
- Karimi B, Vafaeezadeh M, Chem. Commun., 48, 3327 (2012)
- Yue MWQ, Wei J, Deng Y, Liu T, Che R, Tu B, Zhao D, Angew. Chem.-Int. Edit., 51, 10368 (2012)
- Lam MK, Lee KT, Mohamed AR, Biotechnol. Adv., 28, 500 (2010)
- Park JY, Kim DK, Lee JS, Bioresour. Technol., 101, S62 (2010)
- Alegria A, Cuellar J, Appl. Catal. B: Environ., 179, 530 (2015)
- Narkhede N, Patel A, Ind. Eng. Chem. Res., 52, 13637 (2013)
- Park JY, Park MS, Lee YC, Yang JW, Bioresour. Technol., 184, 267 (2015)
- Kang HG, Lee KM, Choi S, Nam B, Choi SA, Lee SC, Park JY, Lee GW, Lee HU, Lee YC, RSC Adv., 5, 63271 (2015)
- Minet J, Abramson S, Bresson B, Sanchez C, Montouillout V, Lequeux N, Chem. Mater., 16, 3955 (2004)
- Melo MA, Oliveira FJVE, Airoldi C, Appl. Clay Sci., 42, 130 (2008)
- Melo MA, Airoldi C, J. Chem. Soc.-Dalton Trans., 39, 10217 (2010)
- Lee YC, Kim M, Woo MA, Park H, Han JI, Biosens. Bioelectron., 42, 373 (2013)
- Kang K, Lee H, Kim M, Park S, Chang SJ, Park JH, Huh Y, Lee J, Yang M, Lee YC, Park H, J. Nanobiotechnol., 13, 88 (2015)
- Lee YC, Kim EJ, Ko DA, Yang JW, J. Hazard. Mater., 196, 101 (2011)
- Liu D, Yuan P, Liu H, Cai J, Tan D, He H, Zhu J, Chen T, Appl. Clay Sci., 80-81, 407 (2013)
- Firestone D, Official Methods and Recommended Practices of the AOCS, 6th ed., 2013, p. 1200.
- Murillo B, Sanchez A, Sebastian V, Casado-Coterillo C, de la Iglesia O, Lopez-Ram-de-Viu MP, Tellez C, Coronas J, J. Chem. Technol. Biotechnol., 89(9), 1344 (2014)
- Jaber M, Miehe-Brendle J, Michelin L, Delmotte L, Chem. Mater., 17, 5275 (2005)
- Datta K, Achari A, Eswaramoorthy M, J. Mater. Chem. A, 1, 6707 (2013)
- Lee YC, Huh YS, Farooq W, Han JI, Oh YK, Park JY, RSC Adv., 3, 12802 (2013)
- Lee YC, Huh Y, Farooq W, Han JI, Oh YK, Park JY, RSC Adv., 3, 12802 (2013)
- Moreno JI, Jaimes R, Gomez R, Nino-Gomez ME, Catal. Today, 172(1), 34 (2011)
- Sarkar A, Ghosh SK, Pramanik P, J. Mol. Catal. A-Chem., 327(1-2), 73 (2010)
- Mann S, Burkett S, Davis S, Fowler C, Mendelson N, Sims S, Chem. Mater., 9, 2300 (1997)
- Lee YC, Rengaraj A, Ryu T, Lee HU, An HR, Lee KS, Lee GW, Kim JY, Ryu J, Heo NS, Kim BG, Huh YS, RSC Adv., 6, 1324 (2016)
- Cho S, Yu J, Kang SK, Shih DY, J. Electron. Mater., 34, 635 (2005)
- Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD, Chem. Mater., 12, 2448 (2000)
- Dufaud V, Davis ME, J. Am. Chem. Soc., 125(31), 9403 (2003)
- da Fonseca MG, Silva CR, Airoldi C, Langmuir, 15(15), 5048 (1999)
- Chen SY, Huang CY, Yokoi T, Tang CY, Huang SJ, Lee JJ, Chan JCC, Tatsumi T, Cheng S, J. Mater. Chem., 22, 2233 (2012)
- Burkett SL, Press A, Mann S, Chem. Mater., 9, 1071 (1997)
- Rubio C, Murillo B, Casado-Coterillo C, Mayoral A, Tellez C, Coronas J, Berenguer-Murcia A, Cazorla-Amoros D, Int. J. Hydrog. Energy, 39(25), 13180 (2014)
- Farooq W, Lee YC, Han JI, Darpito CH, Choi M, Yang JW, Green Chem., 15, 749 (2013)
- Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U, Appl. Catal. A: Gen., 328(2), 174 (2007)
- Zaki MI, Mekhemer GAH, Fouad NE, Rabee AIM, Appl. Surf. Sci., 308, 380 (2014)
- Stanciulescu M, Bulsink P, Caravaggio G, Nossova L, Burich R, Appl. Surf. Sci., 300, 201 (2014)
- Lonyi F, Valyon J, Microporous Mesoporous Mater., 47, 293 (2001)
- da Silva MJ, Cardoso AL, J. Catal., 203, 11 (2013)
- Melero JA, Bautista LF, Iglesias J, Morales G, Sanchez-Vazquez R, Wilson K, Lee AF, Appl. Catal. A: Gen., 488, 111 (2014)