화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.5, 823-827, September, 2016
편광 FTIR 이미징 시스템을 이용한 액정 배향 연구
Studies on Liquid Crystal Orientation Using Polarized FTIR Imaging System
E-mail:
초록
편광 적외선(infrared, IR)을 사용한 FTIR 이미징 실험으로 시료 전체의 평균 배향 상태가 아닌 각 위치에서의 분자 배열 정도를 측정할 수 있었다. 시료 내에서 분자들의 배향 방향이 서로 다른 액정 셀(cell)에 대하여 러빙(rubbing) 강도와 온도에 따른 편광 FTIR 이미징 실험을 수행하였다. 5CB 액정들이 불규칙하게 배열된 영역과 한방향으로 나란히 배열된 두 영역의 경계 부분 IR 이미지는 러빙 강도에 따라 변하였으며, 5CB가 온도에 따라 액정상에서 액체상으로 변화하는 IR 이미지로부터는 배열이 흐트러진 마이크로미터 크기의 영역들이 배향된 액정상 내에서 부분적으로 먼저 나타난 후 전체의 배열이 모두 변하였다.
Molecular orientations at each domains of a sample, not an average of whole area, could be measured using the FTIR imaging experiment with polarized IR beam. Polarized FTIR imaging experiments according to the rubbing strength and sample temperature were carried out for 5CB liquid crystal (LC) cell containing different molecular orientations. At the boundary between areas with random molecular arrangement and perfect LC alignment, the IR image of the cell was changed with rubbing strength. When 5CB changed from LC phase to isotropic liquid phase, disordered areas with micrometer-size were first observed within the area of perfect LC alignment, then whole LC molecules changed to the disordered isotropic phase.
  1. Painter PC, Coleman MM, Koenig JL, The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials, John Wiley & Sons Inc., New York, 1982.
  2. Ok J, Song K, Polym. Korea, 20(6), 1042 (1996)
  3. Lee SC, Oh SJ, Polym. Sci. Technol., 21, 2 (2010)
  4. Bhargava R, Levin IW, Anal. Chem., 73, 5157 (2001)
  5. Sugiyama H, Koshoubu J, Kashiwabara S, Nagoshi T, Larsen RA, Akao K, Appl. Spectrosc., 62, 17 (2008)
  6. Nakano T, Yokoyama T, Toriumi H, Appl. Spectrosc., 47, 1354 (1993)
  7. Uhmann W, Becker A, Taran C, Siebert F, Appl. Spectrosc., 45, 390 (1991)
  8. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW, Anal. Chem., 67, 3377 (1995)
  9. Lewis EN, Gorbach AM, Marcott C, Levin IW, Appl. Spectrosc., 50, 263 (1996)
  10. Gupper A, Chan KLA, Kazarian SG, Macromolecules, 37(17), 6498 (2004)
  11. McFarland CA, Koenig JL, West JL, Appl. Spectrosc., 47, 321 (1993)
  12. Rafferty DW, Koenig JL, Magyar G, West JL, Appl. Spectrosc., 56, 284 (2002)
  13. Snively CM, Koenig JL, J. Polym. Sci. B: Polym. Phys., 37(17), 2353 (1999)
  14. Toriyama K, Dunmur DA, Mol. Phys., 56, 479 (1985)
  15. Kato K, Kobinatia S, Maeada S, Liq. Cryst., 5, 595 (1989)
  16. Bae JW, Song K, Polym. Korea, 39(4), 690 (2015)