화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.9, 838-846, September, 2016
Effect of polycaprolactone-co-polylactide copolyesters’ arms in enhancing optical transparent PLA toughness
E-mail:
Considering enhanced toughness of polylactic acid (PLA) including retaining its optical transparency, star-shaped copolyester was investigated. The star-shaped polycaprolactone-co-polylactide (stPCL-co-PLA) with a different number of arms was synthesized using star-shaped initiators. The thermal properties and crystallinity of stPCL-co-PLA were independent to the number of arms of the polymer. However, number of arms of stPCL-co-PLA affected to crystallinity of PLA in the blend of PLA/stPCL-co-PLA. The glass transition temperature of the blend was decreased with the addition of stPCL-co-PLA plasticizers. The stPCL-co-PLA with 2-arms and 4-arms provided increasing of crystallinity of PLA in the blends but 3-arms resulted in decreasing of crystallinity due to their steric hindrance. Moreover, the toughness of PLA was enhanced with mixed stPCL-co-PLA up to 3 phr; for example, 4-arms of stPCL-co-PLA provided increasing of toughness as 61% compared to neat PLA. The results revealed that an improvement in toughness might be obtained from shear-yielding deformation which was provided from rubbertoughened amorphous plastics accompanied with extensive orientation of the semicrystalline portion. Moreover, it was found that at 3 phr of stPCL-co-PLA, the compound retained its optical transparency comparable to neat PLA.
  1. Rasal RM, Janorkar A, Hirt DE, Prog. Polym. Sci, 35, 338 (2010)
  2. Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)
  3. Labrecque LV, Kumar RA, Dave V, Gross RA, Mccarthy SP, J. Appl. Polym. Sci., 66(8), 1507 (1997)
  4. Pillin I, Montrelay N, Grohens Y, Polymer, 47(13), 4676 (2006)
  5. Wang YB, Hillmyer MA, J. Polym. Sci. A: Polym. Chem., 39(16), 2755 (2001)
  6. Ishida S, Nagasaki R, Chino K, Dong T, Inoue Y, J. Appl. Polym. Sci., 113(1), 558 (2009)
  7. Babcock LM, Henton DE, Tadesse FA, U.S. Patent 2010/0144971 A1, June 10, 2010.
  8. Choochottiros C, Park E, Chin IJ, J. Ind. Eng. Chem., 18(3), 993 (2012)
  9. Choochottiros C, Chin I, Eur. Polym. J., 49, 957 (2013)
  10. Odent J, Leclere P, Raquez J, Dubois P, Eur. Polym. J., 49, 914 (2013)
  11. Dong CM, Qiu KY, Cu ZW, Feng XD, Macromolecules, 34(14), 4691 (2001)
  12. Ren J, Zhang ZH, Feng Y, Li JB, Yuan WZ, J. Appl. Polym. Sci., 118(5), 2650 (2010)
  13. Zhang W, Zheng S, Guo Q, J. Appl. Polym. Sci., 106(1), 417 (2007)
  14. Lang MD, Chu CC, J. Appl. Polym. Sci., 86(9), 2296 (2002)
  15. Phuphuak Y, Chirachanchai S, Polymer, 54(2), 572 (2013)
  16. Odent J, Habibi Y, Raquez J, Dubois P, Compos. Sci. Technol., 84, 86 (2013)
  17. Shibata A, Takase H, Shibata M, Polymer, 55, 5407 (2014)
  18. Di Lorenzo ML, Cocca M, Malinconico M, Thermochim. Acta, 522(1-2), 110 (2011)
  19. Mekonnen T, Mussone P, Khalil H, Bressler D, J. Mater. Chem. A, 1, 13379 (2013)
  20. Kim NY, Yun YS, Lee JY, Choochottiros C, Pyo H, Chin IJ, Jin HJ, Macromol. Res., 19(9), 943 (2011)
  21. Stoclet G, Lefebvre JM, Seguela R, Vanmansart C, Polymer, 55(7), 1817 (2014)
  22. Sperling LH, in Introduction to Physical Polymer Science, John Wiley & Sons Inc., 4th ed., Hoboken, New Jersey, 2006, pp 569-572.
  23. Niaounakis M, in Biopolymers: Applications and Trends, Elsevier Inc, Massachusetts, 2015, pp 101-102.