Korean Journal of Chemical Engineering, Vol.33, No.10, 2923-2929, October, 2016
Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite
E-mail:
Sugarcane bagasse was co-pyrolyzed with lignite in a fixed bed reactor to investigate the possible interaction during co-pyrolysis. GC-MS revealed that the concentration of phenols and aliphatic compounds in the tar increased with the addition of sugarcane bagasse, while the content of aromatic compounds had the contradictory tendency. The phenol content in co-pyrolyzed tar reached 20.35%, which increased by 142.26% compared with the calculated values. The sugarcane bagasse decomposition peak partly overlapped with lignite pyrolysis peak from TG-DTG curves, which meant more interaction between lignite and sugarcane bagasse during the pyrolysis process. The difference between the experimental and calculated values of pyrolysis products yield, tar components, DTG values and kinetics analysis indicated the synergetic effect between lignite and sugarcane bagasse.
- Edreis EMA, Luo GQ, Yao H, J. Anal. Appl. Pyrolysis, 107, 107 (2014)
- Xian P, Lu Y, Wang XY, Zhong LY, Chemistry and Industry of Forest Products, 26, 65 (2006)
- Mi T, Chen HP, Gao B, Liu DC, J. Huazhong Univ. Sci. Technol., 33, 71 (2005)
- Liao YF, Zeng CC, Ma XQ, Song JH, Journal of South China University Technol., 41, 1 (2013)
- Mao YB, Dong L, Dong YP, Liu WP, Chang JF, Yang S, Lv ZC, Fan PF, Bioresour. Technol., 181, 155 (2015)
- Wu ZQ, Wang SZ, Zhao J, Chen L, Meng HY, Bioresour. Technol., 169, 220 (2014)
- Song YY, Tahmasebi A, Yu JL, Bioresour. Technol., 174, 204 (2014)
- Aboyade AO, Gorgens JF, Carrier M, Meyer EL, Knoetze JH, Fuel Process. Technol., 106, 310 (2013)
- Krerkkaiwan S, Fushimi C, Tsutsumi A, Kuchonthara P, Fuel Process. Technol., 115, 11 (2013)
- Yang X, Yuan CY, Xu J, Zhang WJ, Bioresour. Technol., 173, 1 (2014)
- Aboyade AO, Carrier M, Meyer EL, Knoetze H, Gorgens JF, Energy Conv. Manag., 65, 198 (2013)
- He XM, Pan Y, Chen K, Wu LS, Coal Conversion, 35, 11 (2012)
- Kastanaki E, Vamvuka D, Grammelis P, Kakaras E, Fuel Process. Technol., 77, 159 (2002)
- Collot AG, Zhuo Y, Dugwell DR, Kandiyoti R, Fuel, 78(6), 667 (1999)
- Moghtaderi B, Meesri C, Wall TF, Fuel, 83(6), 745 (2004)
- Aboyade AO, Carrier M, Meyer EL, Knoetze JH, Gorgens JF, Thermochim. Acta, 530, 95 (2012)
- Zheng ZF, Huang YB, Jiang JC, Zhou L, Yang XQ, Journal of Southwest Forestry University, 30, 63 (2010)
- Cheng XH, He XM, Dai D, Zhang D, Zeng XC, Chem. Ind. Eng. Prog., 34, 4385 (2015)
- Weiland NT, Means NC, Morreale BD, Fuel, 94(1), 563 (2012)
- Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, Ellis N, Grace JR, Fuel, 117, 1204 (2014)
- Cahyono RB, Rozhan AN, Yasuda N, Nomura T, Hosokai S, Kashiwaya Y, Akiyama T, Fuel Process. Technol., 113, 84 (2013)
- Xiong J, Zhou ZJ, Xu SQ, Yu GS, CIESC J., 1, 192 (2011)
- Xu SQ, Zhou ZJ, Dai ZH, Yu GS, Gong X, Journal of Chemical Engineering of Chinese Universities, 1 (2010)
- Howaniec N, Smolinski A, Stanczyk K, Pichlak M, Int. J. Hydrog. Energy, 36(22), 14455 (2011)
- Wu HX, Li HB, Zhao ZL, J. of Fuel Chem. Technol., 37, 538 (2009)
- Yi S, He XM, Cheng XH, Lin HT, Zheng H, Chem. Eng., 44, 64 (2016)
- Ahn S, Choi G, Kim D, Biomass Bioenerg., 71, 144 (2014)
- Chen CX, Ma XQ, He Y, Bioresour. Technol., 117, 264 (2012)