화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.10, 3011-3015, October, 2016
Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers
E-mail:
In the laccase-catalyzed polymerization of m-phenylendiamine in 100% aqueous buffers, the yield of the polymer was strongly influenced by various reaction conditions such as the solution pH and the concentrations of laccase and m-phenylendiamine. When the reaction was performed at pH 3, the 100% synthetic yield of the polymer was achieved. As pH increased, the yield of the polymer decreased significantly to only 4.4% at pH 9. Effects of solution pH on the morphology and the thermal stability of the polymer were investigated in detail. The polymer synthesized at pH 3 has the typical aggregated morphology of globular particles, but being synthesized at pH 7, it has non-aggregated morphology. The thermal stability of the polymer deteriorated as reaction pH increased.
  1. Li XG, Huang MR, Duan W, Yang YL, Chem. Rev., 102(9), 2925 (2002)
  2. Li XG, Ma XL, Sun J, Huang MR, Langmuir, 25(3), 1675 (2009)
  3. Park H, Kwon O, Ryu K, Korean J. Chem. Eng., 32(9), 1847 (2015)
  4. Wang J, Yin X, Tang W, Ma H, Korean J. Chem. Eng., 32(9), 1889 (2015)
  5. Zhang YW, Wang L, Tian JQ, Li HL, Luo YL, Sun XP, Langmuir, 27(6), 2170 (2011)
  6. Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y, J. Mater. Chem., 22, 18244 (2012)
  7. Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789 (2013)
  8. Wang JJ, Jiang J, Hit B, Yu SH, Adv. Funct. Mater., 18(7), 1105 (2008)
  9. Gross RA, Kumar A, Kalra B, Chem. Rev., 101(7), 2097 (2001)
  10. Alvarez S, Manolache S, Danes FJ, AAPG Bull., 88, 369 (2003)
  11. Nabid MR, Entezami AA, J. Appl. Polym. Sci., 94(1), 254 (2004)
  12. Ochoteco E, Mecerreyes D, Adv. Polym. Sci., 237, 1 (2010)
  13. Ichinohe D, Muranaka T, Sasaki T, Kobayashi M, Kise H, J. Polym. Sci. A: Polym. Chem., 36(14), 2593 (1998)
  14. Ichinohe D, Muranaka T, Kise H, J. Appl. Polym. Sci., 70(4), 717 (1998)
  15. Shan J, Cao S, Polym. Adv. Technol., 11, 288 (2000)
  16. Ichinohe D, Saitoh N, Kise H, Macromol. Chem. Phys., 199, 1241 (1998)
  17. Piontek K, Antorini M, Choinowski TJ, Biol. Chem., 277, 37663 (2002)
  18. Madhavi V, Lele SS, BioResour., 4, 1694 (2009)
  19. Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY, Enzyme Microb. Technol., 33(5), 556 (2003)
  20. Song HK, Palmore GTR, J. Phys. Chem. B, 109(41), 19278 (2005)
  21. Birhanli E, Yesilada O, Biochem. Eng. J., 52, 33 (2010)
  22. Raseda N, Hong S, Kwon OY, Ryu K, J. Microbiol. Biotechnol., 24, 1673 (2014)
  23. Dordick JS, Enzyme Microb. Technol., 11, 194 (1989)
  24. Klibanov AM, Nature, 409, 241 (2001)
  25. Carrea G, Riva S, Angew. Chem.-Int. Edit., 39, 2226 (2000)
  26. Yan XB, Han ZJ, Yang Y, Tay BK, J. Phys. Chem. C, 111, 4125 (2007)
  27. Tran HD, Wang Y, D’Arcy JM, Kaner RB, ACS Nano, 2, 1841 (2008)
  28. Huang JX, Kaner RB, J. Am. Chem. Soc., 126(3), 851 (2004)
  29. Sahoo NG, Jung YC, So HH, Cho JW, Synth. Met., 157, 374 (2007)