Applied Chemistry for Engineering, Vol.27, No.5, 483-489, October, 2016
용이한 마이크로웨이브 조사법을 사용하여 합성한 이원계 Cu (I) 셀렌 그래핀 나노복합체의 광촉매 염료분해 효과
Photocatalytic Dye Decomposition Effect of Binary Copper (I) Selenide-graphene Nanocomposites Synthesized with Facile Microwave-assisted Technique
E-mail:
초록
본 연구에서 쉽고 빠른 마이크로 조사법을 사용하여 합성한 Cu2Se-그래핀 나노복합체를 광촉매 분해 효과를 연구하였다. 제조된 나노복합체는 XRD, SEM, TEM, 라만분광분석, XPS 및 UV-Vis 흡수분광법을 사용하여 특성화하였다. 그리고 광촉매 분해특성을 가시광선 조사하에 표준염료인 로다민 B의 분해를 통하여 연구하였다. Cu2Se-그래핀 복합체는 상당히 우수한 광촉매 분해 효과를 나타내었고, 이는 180 min 동안 가시광선 조사하에서 약 95%의 분해 효과를 나타내고 있음을 이들 결과로부터 알 수 있었다. 결론적으로 Cu2Se-그래핀 복합체는 염료 오염물질에 대한 적합한 촉매로 사용할 수 있음을 확인하였다.
Here, we examined the photo-degradation efficiency of Cu2Se-graphene nanocomposites synthesized by a facile and fast microwave- assisted technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, XPS and UV-Vis spectrophotometry. The photocatalytic performance was studied through the decomposition of Rhodamine (Rh B) as a standard dye under visible light radiation. A 95% of Rh B degradation after visible light irradiation for 180 min indicates that the Cu2Se-graphene composite exhibited significant photodegradation efficiency. Therefore, it can be concluded that the synthesized Cu2Se-graphene can be used as a suitable catalyst for decomposing dye pollutants.
- Kyung H, Lee J, Choi W, Environ. Sci. Technol., 39(7), 2376 (2005)
- Vinu R, Madras G, Appl. Catal. A: Gen., 366(1), 130 (2009)
- Amani-Ghadim AR, Aber S, Olad A, Ashassi-Sorkhabi H, Chem. Eng. Process., 64, 68 (2013)
- Anas M, Han DS, Mahmoud K, Park H, Wahab AA, Mater. Sci. Semicond. Process, 41, 209 (2016)
- Carvalho HP, Huang J, Zhao M, Liu G, Dong L, Liu X, Alex. Eng. J., 54(3), 777 (2015)
- Bessegato GG, Cardoso JC, da Silva BF, Zanoni MVB, Appl. Catal. B: Environ., 180, 161 (2016)
- Esteves BM, Rodrigues CD, Boaventura R, Hodar FM, Madeira LM, J. Environ. Manage., 166, 193 (2016)
- Shakir K, Elkafrawy AF, Ghoneimy HF, Beheir SC, Refaat M, Water Res., 44(5), 1449 (2010)
- Meng ZD, Oh WC, Ultrason. Sonochem., 18(3), 757 (2011)
- Sun M, Fang Y, Wang Y, Sun S, He J, Yan Z, J. Alloy. Compd., 650, 520 (2015)
- Leng YP, Gao YH, Wang WC, Zhao YP, J. Supercrit. Fluids, 103, 115 (2015)
- Rauf MA, Ashraf SS, Chem. Eng. J., 151(1), 10 (2009)
- Senthilraja A, Subash B, Krishnakumar B, Rajamanickam D, Swaminathan M, Shanthi M, Mater. Sci. Semicond. Process, 22, 83 (2014)
- Rtimi S, Pulgarin C, Sanjines R, Kiwi J, Appl. Catal. B: Environ., 162, 236 (2015)
- Phu ND, Hoang LH, Chen X, Kong MH, Wen HC, Chou WC, J. Alloy. Compd., 647, 123 (2015)
- Zhang J, Xu LJ, Zhu ZQ, Liu QJ, Mater. Res. Bull., 70, 358 (2015)
- Sha Y, Mathew I, Cui Q, Clay M, Gao F, Zhang XJ, Gu Z, Chemosphere, 144, 1530 (2016)
- Cao Y, Gu X, Yu H, Zeng W, Liu X, Jiang S, Li Y, Chemosphere, 144, 836 (2016)
- Das D, Dutta RK, J. Colloid Interface Sci., 457, 339 (2015)
- Bogireddy NKR, Kumar HAK, Mandal BK, J. Environ. Chem. Eng., 4(1), 56 (2016)
- Mahesh KPO, Kuo DH, Appl. Surf. Sci., 357, 433 (2015)
- Jagminas A, Juskenas R, Gailiute I, Statkute G, Tomasiunas R, J. Cryst. Growth, 294(2), 343 (2006)
- Ung TDT, Nguyen QL, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(4), 045003 (2011)
- Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2009)
- Geim AK, Graphene, Science, 324(5934), 1530 (2009)
- Seo YK, Hundal G, Jang IT, Hwang YK, Jun CH, Chang JS, Microporous Mesoporous Mater., 119, 331 (2009)
- Taylor-Pashow KML, Della Rocca J, Xie ZG, Tran S, Lin WB, J. Am. Chem. Soc., 131(40), 14261 (2009)
- Khan NA, Jhung SH, Coord. Chem. Rev., 285, 11 (2015)
- Choi JS, Son WJ, Kim J, Ahn WS, Microporous Mesoporous Mater., 116, 727 (2008)
- Liu WL, Ye LH, Liu XF, Yuan LM, Lu XL, Jiang JX, Inorg. Chem. Commun., 11, 1250 (2008)
- Bilecka I, Niederberger M, Nanoscale, 2, 1358 (2010)
- Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA, Chem. Mater., 11(4), 882 (1999)
- Rajamathi M, Seshadri R, Solid State Mater. Sci., 6, 337 (2002)
- Komarneni S, Curr. Sci., 85(12), 1730 (2003)
- Shi SZ, Hwang JY, J. Miner. Mater. Charact. Eng., 2, 101 (2003)
- Ullah K, Ali A, Ye S, Zhu L, Oh WC, Sci. Adv. Mater., 7(4), 606 (2015)
- Oh WC, Zhang FJ, Asian J. Chem., 23(2), 875 (2011)
- Chen ML, Park CY, Choi JG, Oh WC, J. Korean. Ceram. Soc., 48(2), 147 (2011)
- Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, Li Q, Uher C, Day T, Snyder GJ, Nat. Mater., 11(5), 422 (2012)
- Glazov VM, Pashinkin AS, Fedorov VA, Inorg. Mater., 36(7), 641 (2000)
- Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2(6), 949 (2012)
- Pejova B, J. Solid State Chem., 213, 22 (2014)
- Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS, Phys. Rep., 473(5), 51 (2009)
- Xiang QJ, Yu JG, Jaroniec M, J. Am. Chem. Soc., 134(15), 6575 (2012)
- Tang B, Guoxin H, Gao H, Appl. Spectrosc. Rev., 45(5), 369 (2010)
- Ghosh T, Ullah K, Nikam V, Park CY, Meng ZD, Oh WC, Ultrason. Sonochem., 20(2), 768 (2013)
- Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8(1), 36 (2008)
- Riha SC, Johnson DC, Prieto AL, J. Am. Chem. Soc., 133(5), 1383 (2010)
- Fan W, Zhang Q, Wang Y, Phys. Chem. Chem. Phys., 15, 2632 (2013)
- Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis DI, Dekany I, Chem. Mater., 18, 2740 (2006)
- Jeong HK, Noh HJ, Kim JY, Jin MH, Park CY, Lee YH, Europhys. Lett., 82, 67004 (2008)
- Chen X, Shen S, Guo L, Mao S, Chem. Rev., 210, 6503 (2010)
- Cahen D, Ireland PJ, Kazmerski LL, Thiel FA, J. Appl. Phys., 5, 4761 (1985)
- Kyriakopoulos J, Tzirakis MD, Panagiotou GD, Alberti MN, Triantafyllidis KS, Giannakaki S, Bourikas K, Kordulis C, Orfanopoulos M, Lycourghiotis A, Appl. Chem., 117, 36 (2012)
- Wang Y, Shi R, Lin J, Zhu Y, Energy Environ. Sci., 4(8), 2922 (2011)