화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.5, 483-489, October, 2016
용이한 마이크로웨이브 조사법을 사용하여 합성한 이원계 Cu (I) 셀렌 그래핀 나노복합체의 광촉매 염료분해 효과
Photocatalytic Dye Decomposition Effect of Binary Copper (I) Selenide-graphene Nanocomposites Synthesized with Facile Microwave-assisted Technique
E-mail:
초록
본 연구에서 쉽고 빠른 마이크로 조사법을 사용하여 합성한 Cu2Se-그래핀 나노복합체를 광촉매 분해 효과를 연구하였다. 제조된 나노복합체는 XRD, SEM, TEM, 라만분광분석, XPS 및 UV-Vis 흡수분광법을 사용하여 특성화하였다. 그리고 광촉매 분해특성을 가시광선 조사하에 표준염료인 로다민 B의 분해를 통하여 연구하였다. Cu2Se-그래핀 복합체는 상당히 우수한 광촉매 분해 효과를 나타내었고, 이는 180 min 동안 가시광선 조사하에서 약 95%의 분해 효과를 나타내고 있음을 이들 결과로부터 알 수 있었다. 결론적으로 Cu2Se-그래핀 복합체는 염료 오염물질에 대한 적합한 촉매로 사용할 수 있음을 확인하였다.
Here, we examined the photo-degradation efficiency of Cu2Se-graphene nanocomposites synthesized by a facile and fast microwave- assisted technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, XPS and UV-Vis spectrophotometry. The photocatalytic performance was studied through the decomposition of Rhodamine (Rh B) as a standard dye under visible light radiation. A 95% of Rh B degradation after visible light irradiation for 180 min indicates that the Cu2Se-graphene composite exhibited significant photodegradation efficiency. Therefore, it can be concluded that the synthesized Cu2Se-graphene can be used as a suitable catalyst for decomposing dye pollutants.
  1. Kyung H, Lee J, Choi W, Environ. Sci. Technol., 39(7), 2376 (2005)
  2. Vinu R, Madras G, Appl. Catal. A: Gen., 366(1), 130 (2009)
  3. Amani-Ghadim AR, Aber S, Olad A, Ashassi-Sorkhabi H, Chem. Eng. Process., 64, 68 (2013)
  4. Anas M, Han DS, Mahmoud K, Park H, Wahab AA, Mater. Sci. Semicond. Process, 41, 209 (2016)
  5. Carvalho HP, Huang J, Zhao M, Liu G, Dong L, Liu X, Alex. Eng. J., 54(3), 777 (2015)
  6. Bessegato GG, Cardoso JC, da Silva BF, Zanoni MVB, Appl. Catal. B: Environ., 180, 161 (2016)
  7. Esteves BM, Rodrigues CD, Boaventura R, Hodar FM, Madeira LM, J. Environ. Manage., 166, 193 (2016)
  8. Shakir K, Elkafrawy AF, Ghoneimy HF, Beheir SC, Refaat M, Water Res., 44(5), 1449 (2010)
  9. Meng ZD, Oh WC, Ultrason. Sonochem., 18(3), 757 (2011)
  10. Sun M, Fang Y, Wang Y, Sun S, He J, Yan Z, J. Alloy. Compd., 650, 520 (2015)
  11. Leng YP, Gao YH, Wang WC, Zhao YP, J. Supercrit. Fluids, 103, 115 (2015)
  12. Rauf MA, Ashraf SS, Chem. Eng. J., 151(1), 10 (2009)
  13. Senthilraja A, Subash B, Krishnakumar B, Rajamanickam D, Swaminathan M, Shanthi M, Mater. Sci. Semicond. Process, 22, 83 (2014)
  14. Rtimi S, Pulgarin C, Sanjines R, Kiwi J, Appl. Catal. B: Environ., 162, 236 (2015)
  15. Phu ND, Hoang LH, Chen X, Kong MH, Wen HC, Chou WC, J. Alloy. Compd., 647, 123 (2015)
  16. Zhang J, Xu LJ, Zhu ZQ, Liu QJ, Mater. Res. Bull., 70, 358 (2015)
  17. Sha Y, Mathew I, Cui Q, Clay M, Gao F, Zhang XJ, Gu Z, Chemosphere, 144, 1530 (2016)
  18. Cao Y, Gu X, Yu H, Zeng W, Liu X, Jiang S, Li Y, Chemosphere, 144, 836 (2016)
  19. Das D, Dutta RK, J. Colloid Interface Sci., 457, 339 (2015)
  20. Bogireddy NKR, Kumar HAK, Mandal BK, J. Environ. Chem. Eng., 4(1), 56 (2016)
  21. Mahesh KPO, Kuo DH, Appl. Surf. Sci., 357, 433 (2015)
  22. Jagminas A, Juskenas R, Gailiute I, Statkute G, Tomasiunas R, J. Cryst. Growth, 294(2), 343 (2006)
  23. Ung TDT, Nguyen QL, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(4), 045003 (2011)
  24. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2009)
  25. Geim AK, Graphene, Science, 324(5934), 1530 (2009)
  26. Seo YK, Hundal G, Jang IT, Hwang YK, Jun CH, Chang JS, Microporous Mesoporous Mater., 119, 331 (2009)
  27. Taylor-Pashow KML, Della Rocca J, Xie ZG, Tran S, Lin WB, J. Am. Chem. Soc., 131(40), 14261 (2009)
  28. Khan NA, Jhung SH, Coord. Chem. Rev., 285, 11 (2015)
  29. Choi JS, Son WJ, Kim J, Ahn WS, Microporous Mesoporous Mater., 116, 727 (2008)
  30. Liu WL, Ye LH, Liu XF, Yuan LM, Lu XL, Jiang JX, Inorg. Chem. Commun., 11, 1250 (2008)
  31. Bilecka I, Niederberger M, Nanoscale, 2, 1358 (2010)
  32. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA, Chem. Mater., 11(4), 882 (1999)
  33. Rajamathi M, Seshadri R, Solid State Mater. Sci., 6, 337 (2002)
  34. Komarneni S, Curr. Sci., 85(12), 1730 (2003)
  35. Shi SZ, Hwang JY, J. Miner. Mater. Charact. Eng., 2, 101 (2003)
  36. Ullah K, Ali A, Ye S, Zhu L, Oh WC, Sci. Adv. Mater., 7(4), 606 (2015)
  37. Oh WC, Zhang FJ, Asian J. Chem., 23(2), 875 (2011)
  38. Chen ML, Park CY, Choi JG, Oh WC, J. Korean. Ceram. Soc., 48(2), 147 (2011)
  39. Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, Li Q, Uher C, Day T, Snyder GJ, Nat. Mater., 11(5), 422 (2012)
  40. Glazov VM, Pashinkin AS, Fedorov VA, Inorg. Mater., 36(7), 641 (2000)
  41. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2(6), 949 (2012)
  42. Pejova B, J. Solid State Chem., 213, 22 (2014)
  43. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS, Phys. Rep., 473(5), 51 (2009)
  44. Xiang QJ, Yu JG, Jaroniec M, J. Am. Chem. Soc., 134(15), 6575 (2012)
  45. Tang B, Guoxin H, Gao H, Appl. Spectrosc. Rev., 45(5), 369 (2010)
  46. Ghosh T, Ullah K, Nikam V, Park CY, Meng ZD, Oh WC, Ultrason. Sonochem., 20(2), 768 (2013)
  47. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8(1), 36 (2008)
  48. Riha SC, Johnson DC, Prieto AL, J. Am. Chem. Soc., 133(5), 1383 (2010)
  49. Fan W, Zhang Q, Wang Y, Phys. Chem. Chem. Phys., 15, 2632 (2013)
  50. Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis DI, Dekany I, Chem. Mater., 18, 2740 (2006)
  51. Jeong HK, Noh HJ, Kim JY, Jin MH, Park CY, Lee YH, Europhys. Lett., 82, 67004 (2008)
  52. Chen X, Shen S, Guo L, Mao S, Chem. Rev., 210, 6503 (2010)
  53. Cahen D, Ireland PJ, Kazmerski LL, Thiel FA, J. Appl. Phys., 5, 4761 (1985)
  54. Kyriakopoulos J, Tzirakis MD, Panagiotou GD, Alberti MN, Triantafyllidis KS, Giannakaki S, Bourikas K, Kordulis C, Orfanopoulos M, Lycourghiotis A, Appl. Chem., 117, 36 (2012)
  55. Wang Y, Shi R, Lin J, Zhu Y, Energy Environ. Sci., 4(8), 2922 (2011)