Biochemical and Biophysical Research Communications, Vol.477, No.3, 490-494, 2016
Modulation of the voltage-dependent anion channel of mitochondria by elaidic acid
Dietary trans fatty acids (TFAs) are known to increase the risk of cardiovascular diseases by altering plasma lipid profile and activating various inflammatory signaling pathways. Here we show that elaidic acid (EA), the most abundant TFA in diet, alters the electrophysiological properties of voltage-dependent anion channel (VDAC) of mitochondria. Purified bovine brain VDAC, when incorporated in the planar lipid bilayer (PLB) composed of 1,2-diphytanoyl-sn-glycero-3 phosphatidyl choline (DPhPC) and EA in a 9 to 1 ratio (wt/wt), exhibited complete closing events at different voltages. The closing events were observed at even 10 mV, a voltage at which VDAC usually remains fully open all the time. Additionally, the voltage sensitivity of VDAC was lost in presence of EA; the channel conductance did not decrease with increasing voltages. In identical experimental conditions, membrane containing oleic acid (OA), the cis isomer of EA did not produce any such effect. We propose that EA possibly exerts its adverse effect by modulating VDAC. (C) 2016 Elsevier Inc. All rights reserved.