Chemical Engineering Science, Vol.152, 443-456, 2016
Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new closures for the filtered inter-phase drag and stresses in the gas and particle phases are constructed from highly-resolved 3-D simulations of gas-particle flows. These new closure relations are then validated through the bubbling-fluidized-bed challenge problem presented by National Energy Technology Laboratory and Particulate Solids Research Inc. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Computational fluid dynamics (CFD);Constitutive models;Fluidization;Multiphase flow;Scale-up;Two-fluid model