Electrochimica Acta, Vol.215, 483-491, 2016
Room-temperature synthesis of Fe3O4/Fe-carbon nanocomposites with Fe-carbon double conductive network as supercapacitor
Here, we report a new strategy to fabricate unique Fe3O4/Fe-carbon nanotubes (CNTs) nanocomposites at room temperature by a facile chemical synthesis method. In this ternary complex, CNTs were linked and coated by catenulate Fe3O4/Fe particles and were able to form conductive networks, which could reduce interfacial resistance between the electrode and electrolyte, improving the ions diffusion. Compared with single Fe3O4, discharge times of Fe3O4/Fe-CNTs nanocomposites were improved twentyfold. The Fe3O4/Fe-CNTs nanocomposites show a high specific capacitance of 1065 F g(-1) at current density of 1 A g(-1) and cycle stability with 82.1% retention of its initial specific capacitance at 1 A g(-1) after 1000 cycles, which is better than most of Fe3O4 systems reported previously. (C) 2016 Elsevier Ltd. All rights reserved.