화학공학소재연구정보센터
Energy & Fuels, Vol.30, No.8, 6210-6219, 2016
Gas Production from Methane Hydrate: A Laboratory Simulation of the Multistage Depressurization Test in Mallik, Northwest Territories, Canada
Gas hydrate production is still in the test phase. It is only now that numerical models are being developed to describe data and production scenarios. Laboratory experiments are carried out to test the rationale of the conceptual models and deliver input data. Major experimental challenges include (I) the simulation of a natural three-phase system of sand-hydrate-liquid with known and high hydrate saturations and (II) the simulation of transport behavior as deduced from field data. The large-scale reservoir simulator (LARS; 210 L sample) at the GFZ has met these challenges and allowed for the first simulation of the gas production test from permafrost hydrates at the Mallik drill site (Canada) via multistage depressurization. At the starting position, hydrate saturation was as high as 90%, formed from dissolved methane only. Whereas gas hydrate dissociation determined the flow patterns in the early pressure stages, the importance of different transport behaviors increased at lower pressure stages and increasing water content. Gas flow patterns as observed in Mallik were recorded. While the conceptual model for the experimental data does agree with the model proposed for Mallik at moderate and low gas production, it is different at high gas production rates.