화학공학소재연구정보센터
Energy & Fuels, Vol.30, No.8, 6395-6404, 2016
Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere
Fluidized beds have been widely applied to gasification and combustion of biomass. During gasification, a high temperature is preferable to increase the carbon conversion and to reduce the undesirable tar. However, the high temperature may lead to a severe agglomeration problem in a fluidized bed. Understanding of the agglomeration in various atmospheres is crucial to optimize the design and operation conditions. This study focuses on the effects of gases on agglomeration tendency with different types of biomass, including corn straw, rice straw, and wheat straw. The biomass ash samples are mixed with quartz sand and fluidized by the gas mixtures of N-2/CO2, N-2/H-2, and N-2/steam or by air. At 550 degrees C, the bed temperature is increased at the rate of 3 degrees C/min until defluidization occurs. In this way, the defluidization temperature can be determined, which represents the agglomeration tendency. The agglomerates are analyzed by scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDS) for morphology and elemental composition. Significant differences are observed on the defluidization temperature (T-d) and agglomeration mechanisms in different gas atmospheres. T-d in H-2, and steam atmospheres are much lower than that in air. It appears that, in a steam atmosphere, the agglomeration of corn straw and rice straw ash is predominantly coating-induced. The agglomeration in both H-2 and air atmospheres are melting-induced. In a H-2 atmosphere, K2SO4 in the ash samples disappears, caused by decomposition of K2SO4.