화학공학소재연구정보센터
Inorganic Chemistry, Vol.55, No.14, 7012-7019, 2016
Synthesis of Hierarchical Sb2MoO6 Architectures and Their Electrochemical Behaviors as Anode Materials for Li-Ion Batteries
We report a facile microwave-hydrothermal synthesis of hierarchical Sb2MoO6 architectures assembled from single-crystalline nanobelts, which are first demonstrated as anode materials for lithium-ion batteries (LIBs) with superior electrochemical properties. Sb2MoO6 delivers a high initial reversible capacity of similar to 1140 mA h/g at 200 mA/g with large initial Coulombic efficiency of similar to 89%, and a reversible capacity of similar to 878 mA h/g after 100 cycles at 200 mA/g. As a new anode, the electrochemical behaviors are investigated through ex situ TEM and XPS measurements, revealing that the superior electrochemical performance is attributed to the novel hierarchical structures and the synergistic interaction between both the active Sb- and Mo-species, in which the in situ generated Li2OMoOx serves as matrix and efficiently buffers the volume changes of the LiSb alloyingdealloying upon cycling.