화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.5, 655-661, September, 1999
탄소섬유 방향성이 에폭시/탄소섬유 복합재료의 전기전도도에 미치는 영향
Effect of Carbon Fiber Orientation on the Electrical Conductivity of Epoxy/Carbon Fiber Composites
E-mail:
초록
에폭시/탄소섬유 복합재료의 탄소섬유 방향성이 이들의 전기전도도에 미치는 영향에 대하여 살펴보았다. 전도도 측정 방향이 복합재료의 탄소섬유와 같은 방향인 경우, 탄소섬유가 일축으로 배향된 에폭시/탄소섬유 복합재료의 전기전도도는 단위 면적당 전기장 방향과 일치하는 탄소섬유의 밀도가 높음에 따라 이축 배향 및 다축 배향된 복합재료에 비하여 높은 전기전도도를 보였다. 전도도의 측정 방향이 탄소섬유와 직각인 경우, 이와는 반대로 다축 배향 에폭시/탄소섬유 복합재의 전기전도도가 높음을 확인하였다. 또한 graphitic crystallites가 탄소섬유 방향으로 많이 배향된 고탄성 탄소섬유일수록 전기전도도가 높았으며 프리프레그와 프리프레그사이에 전도성 필러를 첨가함으로써 전기전도도를 증가시킬 수 있었다.
The effect of carbon fiber orientation on the electrical conductivity of epoxy/carbon fiber composites has been inbestigated. It was found that the unidirectional(0/0) epoxy/carbon composite has higher longitudinal AC conductivity, the electric vector parallel to the fiber axis, than multidirectional epoxy/carbon fiber composites due to the increase of conducting carbon fiber channels. In case of transverse AC conductivity, the electrical vector is perpendicular to the fiber axis, the opposite tendency was observed. High modulus carbon fiber which has more graphitic crystallites parallel to the fiber axis showed better electrical conductivity. Adding the conductive fillers on the prepreg also enhanced both longitudinal and transverse AC conductivity.
  1. Gurland J, Trans. Metall. AIME, 236, 642 (1966)
  2. Davenport DE, Polym. News, 8, 134 (1982)
  3. Reich S, J. Mater. Sci., 22, 3391 (1987) 
  4. Sichel EK, "Carbon Black Polymer Composites," Marcel Dekker, New York (1982)
  5. Medalla AI, Rubber Chem. Technol., 59, 432 (1986)
  6. Chung SK, Noh ST, Im SS, J. Korean Fiber Soc., 28, 829 (1991)
  7. Rowland SM, Blythe AR, Antec Technical Paper, 668 (1991)
  8. Skotheim TA, "Handbook of Conducting Polymer," Marcel Dekker, N.Y. (1986)
  9. Lee WI, Springer GS, J. Compos. Mater., 18, 357 (1984)
  10. White DRJ, Mardiguian M, "Electromagnetic Shilding, A Handbook Series on Electromagnetic Interference and Compatibility," vol. 2, Inerference Control Technologies Ind., Gainsville, Virginia (1988)
  11. Mardinguian M, "Electrostatic Dischage: Understanding, Simulate and Fix Problem," Interference Control Technologies Inc. Gainsville, Virginia (1986)
  12. Shacklette LW, Colaneri NF, Kulkarni VG, Wessling B, Antec Technicla Paper, 665 (1991)
  13. Choon Y, Kang TW, Chung NS, Korea Emi/Emc Soc., 5, 31 (1994)
  14. Kim HC, See SK, J. Phys. D. Appl. Phys., 23, 916 (1990) 
  15. Maxwell JC, "A Treaties on Electricity and Magnetism," Dover, N.Y. (1954)
  16. Roig FS, Schoutens JE, J. Mater. Sci., 21, 2409 (1986) 
  17. Groves WE, J. Appl. Phys., 24, 845 (1953) 
  18. Walker WF, IEEE Int. Symp. on Electromagnetic Compatibility, 157, New York IEEE (1982)