Journal of Hazardous Materials, Vol.318, 99-108, 2016
Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite
Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4chiorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027 mu M (S/N=3), respectively.