화학공학소재연구정보센터
Journal of Microencapsulation, Vol.33, No.4, 391-399, 2016
Preparation and optimisation of anionic liposomes for delivery of small peptides and cDNA to human corneal epithelial cells
Drug delivery to corneal epithelial cells is challenging due to the intrinsic mechanisms that protect the eye. Here, we report a novel liposomal formulation to encapsulate and deliver a short sequence peptide into human corneal epithelial cells (hTCEpi). Using a mixture of Phosphatidylcholine/Caproylamine/Dioleoylphosphatidylethanolamine (PC/CAP/DOPE), we encapsulated a fluorescent peptide, resulting in anionic liposomes with an average size of 138.8 +/- 34nm and a charge of -18.2 +/- 1.3mV. After 2h incubation with the peptide-encapsulated liposomes, 66% of corneal epithelial (hTCEpi) cells internalised the FITC-labelled peptide, demonstrating the ability of this formulation to effectively deliver peptide to hTCEpi cells. Additionally, lipoplexes (liposomes complexed with plasmid DNA) were also able to transfect hTCEpi cells, albeit at a modest level (8% of the cells). Here, we describe this novel anionic liposomal formulation intended to enhance the delivery of small cargo molecules in situ.