Polymer(Korea), Vol.23, No.6, 825-836, November, 1999
폴리파라페닐렌알킬렌디카르복실레이트의 비섭동 크기 및 평형 고리 올리고머에 관한 연구
A Study on the Unperturbed Dimensions and the Equilibrium Cyclic Oligomer of Poly(p-phenylene alkylene dicarboxylate) (PPAD)
E-mail:
초록
폴리파라페닐렌알킬렌디카르복실레이트(PPAD)의 비섭동 크기 및 고리 올리고머의 몰 고리화 정수(molar cyclization equilibrium constants)를 회전 이성 상태(rotational isomeric state) (RIS) 모델에 의한 Flory의 통계적 행렬 계산법과 여러 이론식에 따른 Monte Carlo 모사로부터 구하였다. 각 PPAD의 비섭동 크기는 같은 지방족 길이를 갖는 폴리알킬렌테레프탈레이트(PAT)보다 켰으며 특히 PPAD 중에서는 폴리페닐렌글루타레이트(PPAD3)의 비섭동 크기가 가장 켰다. 직접 계산 방법으로 반응거리 γ=0.5<γ2>1/2에서 구한 PPAD의 고리 올리고머 분포는 PPAD3, 폴리페닐렌피메레이트(PPAD5), 그리고 폴리페닐렌수버레이트(PPAD6)의 경우 고리 이량체가 주구성원으로 나타났다. 전체 고리 올리고머 함량은 PPAD5가 가장 높았으나 전체적으로는 같은 지방족 길이를 갖고 있는 PAT보다 비섭동 크기가 커서 낮은 고리 올리고머 함량을 보였다.
The unperturbed dimensions and molar cyclization equilibrium constants of poly(p-phenylene alkylene dicarboxylate) (PPAD) were calculated by both Flory''s statistical method and the Monte Carlo simulation on the basis of rotational isomeric state(RIS) model. The unperturbed dimensions of PPAD was larger than that of corresponding poly (alkylene terephthalate) (PAT). Poly(p-phenylene glutarate) (PPAD3) had the largest value among PPAD homologs. Molar cyclization equilibrium constants of PPAD cyclics were calculated by using the direct computation method with a radius
γ=0.5<γ2>1/2. It is found that cyclic dimer is a dominating component for PPAD3, poly(p-phenylene pimelate)(PPAD5), and poly (p-phenylene suberate) (PPAD6), whereas cyclic trimer is that for poly(p-phenylene succinate) (PPAD2) and poly(p-phenylene adipate) (PPAD4).PPAD5 has the largest amount of cyclics and PPAD has lesser amount of cyclics than PAT.
Keywords:poly(p-pyenylene alkylene dicarboxylate) (PPAD);molar cyclization equilibrium constants;rotational isomeric state(RIS) model;Monte Carlo simulation
- Youk JH, Ha WS, Jo WH, Park CR, J. Appl. Polym. Sci., 66(8), 1575 (1997)
- Youk JH, Lee SW, Jo WH, Ha WS, J. Appl. Polym. Sci., in press
- Youk JH, Yoo DI, Jo WH, Ha WS, Polym.(Korea), 23(3), 384 (1999)
- Youk JH, Ph.D. Thesis, Seoul National University (1996)
- Burzin K, Holtrup W, Feinauer R, Angew. Makromol. Chem., 74, 93 (1978)
- Wick G, Zeitler H, Angew. Makromol. Chem., 112, 59 (1983)
- Brunelle DJ, Evans TL, Shannon TG, Bowden EP, Stewart KR, Fontane LP, Bonaute DK, Am. Chem. Soc. Polym. Prepr., 30(2), 569 (1989)
- Brunelle DJ, Bowden EP, Shannon TG, J. Am. Chem. Soc., 117, 2399 (1990)
- Brunelle DJ, Shannon TG, Macromolecules, 24, 3035 (1991)
- Cook TD, Evans TL, McAlea KP, Pearce EJ, U.S. Patent, 5,300,590 (1994)
- Youk JH, Yoo DI, Polym.(Korea), submitted
- Flory PJ, "Statistical Mechanics of Chain Molecules," Wiley, New York (1969)
- Flory PJ, Williams AD, J. Polym. Sci. A: Polym. Chem., 5, 417 (1967)
- Flory PJ, Williams AD, J. Polym. Sci. A: Polym. Chem., 5, 399 (1967)
- Tonelli AE, J. Chem. Phys., 56, 5533 (1972)
- Tonelli AE, J. Chem. Phys., 54, 4637 (1971)
- Tonelli AE, J. Chem. Phys., 52, 4749 (1970)
- Riande E, Eur. Polym. J., 14, 885 (1978)
- Cho JS, Youk JH, Yoo DI, Ko SW, Ha WS, Polym.(Korea), 22(1), 99 (1998)
- Brydson JA, "Plastics Materials," Butterworths, London (1989)
- Jacobson H, Stockmayer WH, J. Chem. Phys., 18, 1600 (1950)
- Beevers MS, Semlyen JA, Polymer, 13, 385 (1972)
- Cooper DR, Semlyen JA, Polymer, 14, 185 (1973)
- Semlyen JA, Adv. Polym. Sci., 21, 41 (1976)
- Semlyen JA, "Cyclic Polymers," Elsevier Applied Science Publishers, London (1986)
- Flory PJ, Suter UW, Mutter M, J. Am. Chem. Soc., 98, 5733 (1976)
- Suter UW, Mutter M, Flory PJ, J. Am. Chem. Soc., 98, 5740 (1976)
- Mutter M, Suter UW, Flory PJ, J. Am. Chem. Soc., 98, 5745 (1976)