화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.28, 5649-5657, 2016
Unraveling the Concerted Reaction Mechanism of the Noncatalyzed Mukaiyama Reaction between C,O,O-Tris(trimethylsilyl)ketene Acetal and Aldehydes Using Density Functional Theory
The uncatalyzed Mukaiyama aldol reaction between C,O,O-tris(trimethylsilyl)ketene acetal and aldehydes bearing alkyl, vinyl, and aromatic substituents has been studied theoretically using density functional theory with the M06-2X exchange-correlation functional. These DFT calculations mostly demonstrate that (i) the syn product is both kinetically and thermodynamically favored, (ii) the diastereoselectivity of the uncatalyzed reaction is larger than observed for the reaction catalyzed by HgI2 and it is inverted with respect to the latter, (iii) solvents with larger dielectric constants increase the activation barrier but reduce the diastereoselectivity, (iv) the concerted reaction is preferred over the stepwise reaction, and (v) the OSiMe3 group in geminal lowers the activation barrier and increases the energy of reaction. Analyzing the concerted mechanism unravels four types of cyclic transition states, two pro-anti and two pro-syn. Then, the relative energy of the most stable transition state of each type as well as of the corresponding anti and syn products shows that the syn reaction path is located at lower Gibbs enthalpy than the anti reaction path for all substituents.