화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.31, 6137-6145, 2016
Simultaneous Two-Photon Absorption to Gerade Excited Singlet States of Diphenylacetylene and Diphenylbutadiyne Using Optical-Probing Photoacoustic Spectroscopy
Simultaneous two-photon absorption to one photon forbidden electronically excited states of diphenylacetylene (DPA) and diphenylbutadiyne (DPB) was investigated by means of highly sensitive optical-probing photoacoustic spectroscopy. The incident laser power dependencies on photo acoustic signal intensity indicate that the signals are dominated by the two-photon absorption regime. Two-photon absorption is responsible for transitions to gerade excited states based on the selection rule. The two-photon absorption bands observed in the heat action spectra were assigned with the aid of quantum chemical calculations. The relative magnitude of the two-photon absorption cross sections of DPA and DPB was estimated, and the larger two-photon absorption cross section of DPB was related to the resonance effect with the red-shifted one-photon allowed 1(1)B(lu) <- 1(1)A(g) transition of DPB.