화학공학소재연구정보센터
Journal of Power Sources, Vol.327, 675-680, 2016
Electrochemical in-situ dissolution study of structurally ordered, disordered and gold doped PtCu3 nanoparticles on carbon composites
Commercial deployment of low-temperature-fuel cells is still hugely restricted by platinum alloy catalysts corrosion. Extensive research of the last years is focused on increasing stability of the catalyst composite, however a comprehensive understanding is still lacking. In pursuing this fundamentally and practically very important objective we present a comparative corrosion study of a PtCu3 nano-alloy system by investigating the effects of structural ordering and gold doping. For that purpose a recently developed electrochemical flow cell (EFC) coupled to inductively coupled plasma mass spectrometer (ICP-MS) is employed. This approach provides potential- and time-resolved insight into dissolution process at extremely low concentrations (ppb level). Our results show a structure-dependent copper corrosion, where ordering and gold-doping significantly improve copper retention in the native alloy. Two assumptions can be drawn from the measured Pt dissolution profiles: (i) a better Pt re-deposition efficiency in catalysts with higher porosity and (ii) the beneficial effect of Au surface doping that lowers the amount of dissolved Pt amount and shifts the Pt cathodic dissolution to lower potentials. A 2.6 nm Pt/C standard catalyst with the same carbon loading shows a much lower stability which is due to the well-known particle size effect. (C) 2016 Elsevier B.V. All rights reserved.