Langmuir, Vol.32, No.28, 7144-7150, 2016
Redox-Responsive Viologen-Mediated Self-Assembly of CB[7]-Modified Patchy Particles
Sulfonated surface patches of poly(styrene)based colloidal particles (CPs) were functionalized with cucurbit[7]uril (CB[7]). The macrocycles served as recognition units for diphenyl viologen (DPV2+), a rigid bridging ligand. The addition of DPV2+ to aqueous suspensions of the particles triggered the self-assembly of short linear and branched chainlike structures. The self-assembly mechanism is based on hydrophobic/ion-charge interactions that are established between DPV2+ and surface-adsorbed CB[7]. DPV2+ guides the self-assembly of the CPs by forming a ternary DPV2+C (CB-[7])(2) complex in which the two CB[7] macrocydes are attached to two different particles. Viologen-driven particle assembly was found to be both directional and reversible. Whereas sodium chloride triggers irreversible particle disassembly, the one-electron reduction of DPV2+ with sodium dithionite causes disassembly that can be reversed via air oxidation. Thus, this bottom-up synthetic supramolecular approach allowed for the reversible formation and directional alignment of a 2D colloidal material.