화학공학소재연구정보센터
Langmuir, Vol.32, No.33, 8322-8328, 2016
Surfactant-Enhanced Spreading of Sessile Water Drops on Polypropylene Surfaces
Spreading of water drops resting in equilibrium on polypropylene surfaces was initiated by dispensing surfactant-laden droplets on their apex. Upon contact of the two drops two processes were kicked-off: surfactant from the droplets spread along the water/air interface of the sessile drops and a train of capillary waves propagated along the sessile drops. The contact line of the sessile drops remained initially pinned and started spreading only when surfactant reached it while the capillary waves did not have an apparent effect on initiating drop spreading. However, surfactant influenced the propagation velocity of the capillary waves. Though the spreading dynamics of such nonhomogeneously mixed surfactant/water drops on polypropylene surfaces was initially different from that of homogeneously mixed drops, the later spreading dynamics was similar and was dominated by viscosity and surface tension in both cases. These results can help in discriminating the path of action of surfactants in bulk and at the water/air interface, which is also relevant for understanding phenomena such as superspreading.