- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.24, No.1, 133-139, January, 2000
저온특성을 갖는 이온전도성 고분자의 합성 연구: Ⅰ. 비정형 PEO 공중합체의 합성 및 분석
Synthesis of Ion Conducting Polymer Having Low Temperature Characteristics: Ⅰ.Synthesis and Characterization of Amorphous PEO Copolymer
E-mail:
초록
분자량이 200 또는 400인 poly(ethylnee glycol) (PEG 200, PEG 400)을 알칼리 존재하에서 다양한 linking agent(CH2Cl2, CH2Br2, CH2I2, Br(CH2),Br)와 반응시켜 oxyalkylene-linked poly(oxyethylene)공중합체를 합성하였다. 얻어진 공중합체의 분자량은 alkali/(CH2Cl2/PEG의 당량비를 달리하여 조절하였으며 PEG 200을 사영하였을 경우 약 500∼8500, 그리고 PEG 400사용하였을 경우 약 1000∼2000정도이었다. 말단의 -OH기 농도 적정에 의한 분자량과 GCP에 의해 얻어진 분자량은 서로 거의 일치하였다. PEG 400으로부터 얻어진 공중합체는 유리전이온도가 약 -75°C정도였고, 용융온도가 10°C정도였으며 결정화도가 0∼25%정도이었다. EH한 PEG 200을 이용하여 합성된 공중합체의 경우는 분자량이 2500이하에서는 완전한 비정형 불질임을 알 수 있었다.
Poly(ethylene glycol) with number-average molecular weight(Mn)of 200(PEG 200) or 400(PEG 400) was reacted with various linking agents (CH2Cl2, CH2Br2, CH2I2, Br(CH2)3Br) in the presence of alkali to form oxyalkylene linked chains. Molecular weights of copolymers were controlled using feed mole ratio of alkai/CH2Cl2/PEG. The Mn of the polymers measured by end group analysis and that measured by GPC agreed well. Molecuglar weights fo polyether copolymers obtained from PEG 200 and PEG 400 were about 500∼8500 and 1000∼2000, respectively. Polyether copolymers prepared from PEG 400 showed melting points of around 10℃. Glass transition temperature of the copolymers were around -75℃ and the crystallinity was about 0∼25%. The polyether copolymers prepared from PEG 200 had no crystallinity below the Mn of 2500.
- Owen J, "Ionic Conductivity," in "Comprehensive Polymer Science," vol. 2, chap. 21, Pergamon, New York, 1989 (1989)
- Derro D, "2nd Int. Symp. Polymer Electrolytes," ed. B. Scosati, p. 433, Elsevier Applied Science, New York, 1990 (1990)
- Ferloni P, Chiodelli G, Magistris A, Sanesi M, Solid State Ion., 18-19, 265 (1986)
- Subramony JA, Kulkarni AR, Mater. Sci. Eng., B22, 206 (1994)
- Blonski PM, Shriver DF, Austin P, Allcock HR, J. Am. Chem. Soc., 106, 6854 (1984)
- Cowie JMG, Martin ACS, Polymer, 28, 627 (1987)
- Craven JR, Mobbs RH, Booth C, Giles JRM, Makromol. Chem. Rapid Commun., 7, 81 (1986)
- Craven JR, Nicholas CV, Webster R, Wilson DJ, Mobbs RH, Morris GA, Heatley F, Booth C, Giles JRM, Brit. Polym. J., 19, 509 (1987)
- Nicholas CV, Wilson DJ, Booth C, Giles JRM, Brit. Polym. J., 20, 289 (1988)
- Kim JB, Choi YH, Kim JG, Polym.(Korea), 20(2), 280 (1996)
- Fish D, Khan IM, Smid J, Makromol. Chem. Rapid Commun., 7, 115 (1986)
- Kim DW, Song JS, Park JK, Electrochim. Acta, 40(11), 1697 (1995)
- Soga K, Hosoda S, Ikeda S, J. Polym. Sci. C-Polym. Lett., 15, 611 (1977)
- Collins EA, Bares J, Billmeyer FW, "Experiments in Polymer Science," p. 709, Wiley-Interscience, New York, 1973 (1973)
- Brandrup J, Immergut EH, "Polymer Handbook," 3rd Ed., Wiley-Interscience, New York, 1989 (1989)
- Pouchert CJ, Behnke J, "The Aldrich Library of (13)C and (1)H FT NMR Spectra," vol. 1, Aldrich Chemical Company, 1993 (1993)