화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.2, 141-148, March, 2000
옥수수 전분에 HEMA-PCL Macromer를 그래프팅시킨 공중합체의 합성 및 특성
Synthesis and Characterization of HEMA-PCL Macromer Grafted onto Starch
E-mail:
초록
Polycaprolactone(PCL)을 base로하는 효과적인 compost필름을 만들기 위하여 옥수수전분을 블렌딩한 뒤 기계적 특성과 미생물에 의한 생분해도를 조사하였다. 비상용성을 보이는 옥수수전분/PCL 블렌드에 대한 상용화제로는 2-hydroxyethylmethacrylate(HEMA)-PCL macromer를 옥수수전분에 그래프팅시킨 고중합체를 사용하였는데 옥수수전분에 대한 HEMA의 그래프팅율이 가장 높은 것과 낮은 것을 선택하여 일정한 조성의 ε-caprolactone에 그래프팅시킨 상용화제들의 상요화 효과를 비교하였다. 상용화제를 함유한 옥수숫전분/PCL(50/50) 블렌드의 신장율이 상당히 증가하였으며 SEM 관찰 결과 이는 사용화제로 인해 옥수수전분 알갱이와 PCL 기질간의 계면 접착력이 증가하였기 때문으로 판단된다. 그러나 모듈러스와 인장강도는 상용화제 사용에도 불구하고 별다른 변화가 없었다.
Polycaprolactone(PCL0 was blended with corn statch to procuce biodegradable compost films and the biodegradability and mechanical properties were investigated. As the compatibilizer for the emmiscible PCL/starch blend, 2-hydroxyethylmethacrylate(HEMA)-PCL macromer was grafted onto starch by intially grafting HEMA to starch and then grafting of PCL onto HEMA via ring opening polymerization of ε-caprolactone. When biodegradability of the PCL grafted starch-g-HEMA copolymers was compared with that of starch by the modified Sturm test, graft copolymers degraded at much slower rates bue to the presence of the non-degradable HEMA. With the addition of the graft copolymer up to 5 wt% to the blend, the elongation-at-break of the starch/PCL blend increased substantially, while the tensile strength and modulus did not change much. SEM observation of the blend containing 2wt% copolymer clearly indicated that the interfacial adhesion between the starch and PCL was strengthened by the copolymer.
  1. Mostafa KM, Polym. Degrad. Stabil., 55, 125 (1997) 
  2. Yang ZH, Bhattacharya M, Vaidya UR, Polymer, 37(11), 2137 (1996) 
  3. Ma DZ, Luo XL, Zhang RY, Nishi T, Polymer, 37(9), 1575 (1996) 
  4. Goldberg D, J. Environ. Polym. Degrad., 3, 61 (1995) 
  5. Johnson KE, Pometto AL, Nikolov ZL, Appl. Environ. Microbiology, 59, 1155 (1993)
  6. Xu GX, Lin SG, Polymer, 37(3), 421 (1996) 
  7. Li T, Topolkaraev VA, Hiltner A, Baer E, Ji XZ, Quirk RP, J. Polym. Sci. B-Polym. Phys., 33(4), 667 (1995) 
  8. Feng HQ, Ye CH, Tian J, Feng ZL, Huang BT, Polymer, 39(10), 1787 (1998) 
  9. Sek D, Kaczmarczyk B, Polymer, 38(12), 2925 (1997) 
  10. Lee MS, Lodge TP, Macosko CW, J. Polym. Sci. B-Polym. Phys., 35(17), 2835 (1997) 
  11. Goni I, Gurruchaga M, Vazquez B, Valero M, Guzman GM, Sanroman J, Polymer, 35(7), 1535 (1994) 
  12. Lim DL, Im SS, Polym.(Korea), 18(3), 368 (1994)
  13. Mehrotra R, Ranby B, J. Appl. Polym. Sci., 22, 2991 (1978) 
  14. Trimnell D, Fanta GF, Salch JH, J. Appl. Polym. Sci., 60(3), 285 (1996) 
  15. Fanta G, Burr R, Doang W, Russel C, J. Appl. Polym. Sci., 21, 425 (1977) 
  16. Nishioka N, Matsumoto Y, Yumen T, Monmae K, Kosai K, Polym. J., 18, 323 (1986) 
  17. Kim MN, Kang EJ, Korea J. Mycol., 23, 348 (1995)
  18. Garton A, "Infrared Spectroscopy of Polymer Blends Composites and Surface," Chap. 6, Hanser, New York, 1992 (1992)
  19. Pouchert CJ, "Aldrich Library of Infrared Spectra," p. 1587, Adrich Chemical Company Inc., 1981 (1981)
  20. Nojima S, Hashizume K, Rohadi A, Sasaki S, Polymer, 38(11), 2711 (1997)