Solar Energy Materials and Solar Cells, Vol.157, 312-317, 2016
Fluorescent cooling of objects exposed to sunlight - The ruby example
Particularly in hot climates, various pigments are used to formulate desired non-white colors that stay cooler in the sun than alternatives. These cool pigments provide a high near-infrared (NIR) reflectance in the solar infrared range of 700-2500 nm, and also a color specified by a reflectance spectrum in the 400700 nm visible range. Still cooler materials can be formulated by also utilizing the phenomenon of fluorescence.(photoluminescence). Ruby, Al2O3:Cr, is a prime example, with efficient emission in the deep red (similar to 694 nm) and near infrared (700-800 nm). A layer of synthetic ruby crystals on a white surface having an attractive red color can remain cooler in the sun than conventional red materials. Ruby particles can also be used as a red/pink pigment. Increasing the Cr:Al ratio produces a stronger (darker) pigment but doping above similar to 3 wt% Cr2O3 causes concentration quenching of the fluorescence. The system quantum efficiency for lightly doped ruby-pigmented coatings over white is high, 0.83 +/- 0.10. (C) 2016 Elsevier B.V. All rights reserved.