화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3115-3120, November, 2016
The promotional effect of K on the catalytic activity of Ni/MgAl2O4 for the combined H2O and CO2 reforming of coke oven gas for syngas production
E-mail:
A K-promoted 10Ni-(x)K/MgAl2O4 catalyst was investigated for the combined H2O and CO2 reforming (CSCR) of coke oven gas (COG) for syngas production. The 10Ni-(x)K/MgAl2O4 catalyst was prepared by co-impregnation, and the K content was varied from 0 to 5 wt%. The BET, XRD, H2-chemisorption, H2-TPR, and CO2-TPD were performed for determining the physicochemical properties of prepared catalysts. Except under the condition of a K/Ni=0.1 (wt%/wt%), the Ni crystal size and dispersion decreased with increasing K/Ni. The coke resistance of the catalyst was investigated under conditions of CH4 : CO2 : H2 : CO : N2=1 : 1 : 2 : 0.3 : 0.3, 800 ℃, 5 atm. The coke formation on the used catalyst was examined by SEM and TG analysis. As compared to the 10Ni/MgAl2O4 catalyst, the Kpromoted catalyst exhibited superior activity and coke resistance, attributed to its strong interaction with Ni and support, and the improved CO2 adsorption characteristic. The 10Ni-1K/MgAl2O4 catalyst exhibited optimum activity and coke resistance with only 1wt% of K.
  1. Xu LL, Song HL, Chou LJ, Int. J. Hydrog. Energy, 38(18), 7307 (2013)
  2. Chen WH, Lin MR, Yu AB, Du SW, Leu TS, Int. J. Hydrog. Energy, 37(16), 11748 (2012)
  3. Bermudez JM, Arenillas A, Luque R, Menendez JA, Fuel Process. Technol., 110, 150 (2013)
  4. Zhang YW, Liu JA, Ding WZ, Lu XG, Fuel, 90(1), 324 (2011)
  5. Yang ZB, Ding WZ, Zhang YY, Lu XG, Zhang YW, Shen PJ, Int. J. Hydrog. Energy, 35(12), 6239 (2010)
  6. Guo HZ, Hou ZY, Gao J, Zheng XM, Energy Fuels, 22(3), 1444 (2008)
  7. Razzaq R, Li CS, Zhang SJ, Fuel, 113, 287 (2013)
  8. Yue BH, Wang XG, Ai XP, Yang J, Li L, Lu XG, Ding WZ, Fuel Process. Technol., 91(9), 1098 (2010)
  9. Park JE, Koo KY, Jung UH, Lee JH, Roh HS, Yoon WL, Int. J. Hydrog. Energy, 40(40), 13909 (2015)
  10. Chen WH, Lin MR, Leu TS, Du SW, Int. J. Hydrog. Energy, 36(18), 11727 (2011)
  11. Yang Z, Zhang Y, Wang X, Zhang Y, Lu X, Ding W, Energy Fuels, 24, 785 (2010)
  12. Koo KY, Lee JH, Jung UH, Kim SH, Yoon WL, Fuel, 153, 303 (2015)
  13. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
  14. Kim YH, Koo KY, Song IK, Korean Chem. Eng. Res., 47(6), 700 (2009)
  15. Song SH, Son JH, Budiman AW, Choi MJ, Chang TS, Shin CH, Korean J. Chem. Eng., 31(2), 224 (2014)
  16. Majidian N, Habibi N, Rezaei M, Korean J. Chem. Eng., 31(7), 1162 (2014)
  17. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, Korean Chem. Eng. Res., 35(6), 890 (1997)
  18. Koo KY, Roh HS, Jung UH, Seo DJ, Seo YS, Yoon WL, Catal. Today, 146, 166 (2009)
  19. Frusteri F, Arena F, Calogero G, Torre T, Parmaliana A, Catal. Commun., 2, 49 (2001)
  20. Luna AEC, Iriarte ME, Appl. Catal. A: Gen., 343(1-2), 10 (2008)
  21. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 301(1), 9 (2006)
  22. Hu X, Lu G, Green Chem., 11, 724 (2009)
  23. Yu XH, Zhang SC, Wang LQ, Jiang Q, Li SG, Tao Z, Fuel, 85(12-13), 1708 (2006)
  24. Iwasa N, Yamane T, Arai M, Int. J. Hydrog. Energy, 36(10), 5904 (2011)