화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3231-3244, November, 2016
Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state
E-mail:
Following three well-established approaches, different modifications have been proposed that significantly improve the Peng-Robinson EOS’s predictions of the volumetric properties of carbon dioxide in the supercritical region. By making use of 5301 experimental PVT data points of supercritical carbon dioxide (SC-CO2), three models have been developed based on the volume-translation concept, modification of the alpha function of the attractive term of the Peng-Robinson EOS and the addition of a third translation parameter to the EOS. The experimental data considered encompass a wide temperature and pressure range of 304.35-1,273.15 K and 7.38-800.00MPa, respectively. According to the results from several graphical and statistical analyses, the proposed models can reliably be employed for prediction and representation of the volumetric properties of SC-CO2 with AARDs below 1.3%. Comparisons have also been made with the modified Redlich-Kwong EOS as well as the standard reference multiparameter EOS developed by Span and Wagner, demonstrating the comparable accuracy of the proposed models, while offering notably simpler mathematical formulation.
  1. Schneider GM, Kautz CB, Tuma D, in Supercritical Fluids, Springer Netherlands, Dordrecht, 31 (2000), DOI:10.1007/978-94-011-3929-8_2.
  2. Brunner G, Annu. Rev. Chem. Biomol. Eng., DOI:10.1146/annurev-chembioeng-073009-101311., 1, 321 (2010)
  3. de Melo MMR, Silvestre AJD, Silva CM, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2014.04.007., 92, 115 (2014)
  4. Fornari T, Vicente G, Vazquez E, Garcia-Risco MR, Reglero G, J. Chromatogr. A, DOI:10.1016/j.chroma.2012.04.051., 1250, 34 (2012)
  5. Taylor LT, Anal. Chem., DOI:10.1021/ac101194x., 82, 4925 (2010)
  6. Brunner G, J. Supercrit. Fluids, DOI:10.1016/j.sup-flu.2008.09.002., 47(3), 373 (2009)
  7. Brunner G, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.09.001., 47(3), 382 (2009)
  8. Debenedetti PG, Tom JW, Kwauk X, Yeo SD, Fluid Phase Equilib., DOI:10.1016/0378-3812(93)87155-T., 82, 311 (1993)
  9. Turk M, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.09.008., 47(3), 537 (2009)
  10. Rozzi NL, Singh RK, Compr. Rev. Food Sci. Food Saf., DOI:10.1111/j.1541-4337.2002.tb00005.x., 1, 33 (2002)
  11. Sekhon B, Int. J. PharmTech Res., 2, 810 (2010)
  12. Lang Q, Wai CM, Talanta, DOI:10.1016/S0039-9140(00)00557-9., 53, 771 (2001)
  13. Rios A, Zougagh M, de Andres F, Bioanalysis, DOI:10.4155/bio.09.167., 2, 9 (2010)
  14. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2007.05.013., 43(1), 150 (2007)
  15. Reverchon E, De Marco I, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2006.03.020., 38(2), 146 (2006)
  16. Tucker SC, Goodyear G, in Supercritical Fluids, Springer Netherlands, Dordrecht, 395 (2000), DOI:10.1007/978-94-011-3929-8_16.
  17. Antal MJ, Brittain A, DeAlmeida C, Ramayya S, Roy JC, ACS Symposium Series, DOI:10.1021/bk-1987-0329.ch007., 329, 77 (1987)
  18. Klein MT, Mentha YG, Torry LA, Ind. Eng. Chem. Res., DOI:10.1021/ie00001a026., 31, 182 (1992)
  19. Reverchon E, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(97)00014-4., 10(1), 1 (1997)
  20. Smith RM, J. Chromatogr. A, DOI:10.1016/S0021-9673(99)00617-2., 856, 83 (1999)
  21. Heidaryan E, Jarrahian A, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2013.05.009., 81, 92 (2013)
  22. Sandler SI, An Introduction to Applied Statistical Thermodynamics, Wiley, 1st Ed. (2010).
  23. Wilczek-Vera G, Vera JH, AIChE J., DOI:10.1002/aic.14741., 61(9), 2824 (2015)
  24. Deiters UK, Macias-Salinas R, Ind. Eng. Chem. Res., DOI:10.1021/ie4038664., 53(6), 2529 (2014)
  25. Smith R, Inomata H, Peters C, in Supercritical Fluid Science and Technology, 333 (2013), DOI:10.1016/B978-0-444-52215-3.00006-4.
  26. Nazarzadeh M, Moshfeghian M, Fluid Phase Equilib., DOI:10.1016/j.fluid.2012.10.003., 337, 214 (2013)
  27. Abudour AM, Mohammad SA, Robinson RL, Gasem KAM, Fluid Phase Equilib., DOI:10.1016/j.fluid.2013.04.002., 349, 37 (2013)
  28. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., DOI:10.1021/i160057a011., 15, 59 (1976)
  29. Robinson DB, Peng DY, The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs (Research Report RR-28), Gas Processors Association (1978).
  30. van der Waals JD, Leiden University, The Netherlands (1873).
  31. Google Scholar, (2016). https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0,5&cites=4508945351855465254.
  32. Valderrama JO, Ind. Eng. Chem. Res., DOI:10.1021/ie020447b., 42(8), 1603 (2003)
  33. Martin JJ, Ind. Eng. Chem. Fundam., DOI:10.1021/i160070a001., 18, 81 (1979)
  34. Peneloux A, Rauzy E, Freze R, Fluid Phase Equilib., DOI:10.1016/0378-3812(82)80002-2., 8, 7 (1982)
  35. de Sant'Ana HB, Ungerer P, de Hemptinne JC, Fluid Phase Equilib., DOI:10.1016/S0378-3812(98)00441-5., 154(2), 193 (1999)
  36. Baled H, Enick RM, Wu Y, McHugh MA, Burgess W, Tapriyal D, Morreale BD, Fluid Phase Equilib., DOI:10.1016/j.fluid.2011.12.027., 317, 65 (2012)
  37. Abudour AM, Mohammad SA, Robinson RL, Gasem KAM, Fluid Phase Equilib., DOI:10.1016/j.fluid.2012.08.013., 335, 74 (2012)
  38. Haghtalab A, Mahmoodi P, Mazloumi SH, Can. J. Chem. Eng., DOI:10.1002/cjce.20519., 89(6), 1376 (2011)
  39. Privat R, Visconte M, Zazoua-Khames A, Jaubert JN, Gani R, Chem. Eng. Sci., DOI:10.1016/j.ces.2014.12.040., 126, 584 (2015)
  40. Cramer NL, in Proceedings of the 1st International Conference on Genetic Algorithms, Ed. Grefenstette JJ, L. Erlbaum Associates Inc., Carnegie-Mellon University, Pittsburgh, PA, USA, 183 (1985).
  41. Koza JR, Genetic programming: on the programming of computers by means of natural selection, MIT Press, Cambridge, MA, USA (1992).
  42. Schmidt M, Lipson H, Science, DOI:10.1126/science.1165893., 324, 81 (2009)
  43. Gandomi AH, Alavi AH, Ryan C, Handbook of Genetic Programming Applications, Springer International Publishing, Cham (2015), DOI:10.1007/978-3-319-20883-1.
  44. Langdon WB, Gustafson SM, Genet. Program. Evolvable Mach., DOI:10.1007/s10710-010-9111-4., 11, 321 (2010)
  45. Schmidt M, Lipson H, Eureqa, Nutonian Inc., http://www.nutonian.com (2016).
  46. Span R, Multiparameter Equations of State, Springer Berlin Heidelberg, Berlin, Heidelberg (2000), DOI:10.1007/978-3-662-04092-8.
  47. Jacobsen RT, Penoncello SG, Lemmon EW, Span R, in Equations of State for Fluids and Fluid Mixtures, Eds. Sengers JV, Kayser RF, Peters CJ, White HJ, Elsevier, Amsterdam, 849 (2000), DOI:10.1016/S1874-5644(00)80008-9.
  48. Span R, Wagner W, Lemmon EW, Jacobsen RT, Fluid Phase Equilib., DOI:10.1016/S0378-3812(01)00416-2., 183-184, 1 (2001)
  49. Span R, Wagner W, J. Phys. Chem. Ref Data, DOI:10.1063/1.555991., 25, 1509 (1996)
  50. Zolghadr A, Escrochi M, Ayatollahi S, J. Chem. Eng. Data, DOI:10.1021/je301283e., 58(5), 1168 (2013)
  51. Kodama D, Kato M, Kaneko T, Fluid Phase Equilib., DOI:10.1016/j.fluid.2013.02.003., 357, 57 (2013)
  52. Kato M, Kodama D, Kokubo M, Ohashi K, Hashimoto S, J. Chem. Eng. Data, DOI:10.1021/je100788g., 56(3), 421 (2011)
  53. Gil L, Martinez-Lopez JF, Artal M, Blanco ST, Embid JM, Fernandez J, Otin S, Velasco I, J. Phys. Chem. B, DOI:10.1021/jp100184r., 114(16), 5447 (2010)
  54. Kodama D, Kato M, Hashimoto S, Kaneko T, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2010.09.019., 55(2), 696 (2010)
  55. Mantilla ID, Cristancho DE, Ejaz S, Hall KR, Atilhan M, Iglesias-Silva GA, J. Chem. Eng. Data, DOI:10.1021/je1001158., 55(11), 4611 (2010)
  56. Kodama D, Sugiyama K, Ono T, Kato M, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.07.021., 47(2), 128 (2008)
  57. Pensado AS, Padua AAH, Comunas MJP, Fernandez J, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2007.10.004., 44(2), 172 (2008)
  58. Suarez-Iglesias O, Medina I, Pizarro C, Bueno JL, Ind. Eng. Chem. Res., DOI:10.1021/ie061591q., 46(11), 3810 (2007)
  59. Liu K, Kiran E, Ind. Eng. Chem. Res., DOI:10.1021/ie070274w., 46(16), 5453 (2007)
  60. Kato M, Sugiyama K, Sato M, Kodama D, Fluid Phase Equilib., DOI:10.1016/j.fluid.2007.01.033., 257(2), 207 (2007)
  61. Pecar D, Dolecek V, J. Chem. Eng. Data, DOI:10.1021/je700373r., 52(6), 2442 (2007)
  62. Pecar D, Dolecek V, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2006.07.007., 40(2), 200 (2007)
  63. Kato M, Kodama D, Sato M, Sugiyama K, J. Chem. Eng. Data, DOI:10.1021/je050514j., 51(3), 1031 (2006)
  64. Skerget M, Cretnik L, Knez Z, Skrinjar M, Fluid Phase Equilib., DOI:10.1016/j.fluid.2004.12.012., 231(1), 11 (2005)
  65. Ferri A, Banchero M, Manna L, Sicardi S, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(03)00114-1., 30(1), 41 (2004)
  66. Eggers R, Jaeger P, in Supercritical Fluids as Solvents and Reaction Media, Elsevier, 363 (2004), DOI:10.1016/B978-044451574-2/50015-8.
  67. Garmroodi A, Hassan J, Yamini Y, J. Chem. Eng. Data, DOI:10.1021/je020218w., 49(3), 709 (2004)
  68. Zhang XF, Zhang XG, Han BX, Shi L, Li HP, Yang GY, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(02)00038-4., 24(3), 193 (2002)
  69. Klimeck J, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1006/jcht.2000.0711., 33(3), 251 (2001)
  70. Ihmels EC, Gmehling J, Ind. Eng. Chem. Res., DOI:10.1021/ie001135g., 40(20), 4470 (2001)
  71. Shi L, Zhang X, Zhang X, Yang G, Han B, Yan H, Acta Physico-Chimica Sin., DOI:10.3866/PKU.WHXB20000107, 16, 31 (2000)
  72. Kodama D, Nakajima T, Tanaka H, Kato M, Netsu Bussei, DOI:10.2963/jjtp.12.186., 12, 186 (1998)
  73. van der Gulik PS, Phys. A Stat. Mech. its Appl., DOI:10.1016/S0378-4371(96)00466-9., 238, 81 (1997)
  74. Lau WW, Hwang CA, Holste JC, Hall KR, Gammon BE, Marsh KN, J. Chem. Eng. Data, DOI:10.1021/je9700434., 42(5), 900 (1997)
  75. Zhang Z, King JW, J. Chromatogr. Sci., DOI:10.1093/chromsci/35.10.483., 35, 483 (1997)
  76. Yaginuma R, Nakajima T, Tanaka H, Kato M, J. Chem. Eng. Data, DOI:10.1021/je9700028., 42(4), 814 (1997)
  77. Nowak P, Tielkes T, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1006/jcht.1997.0208., 29(8), 885 (1997)
  78. Docter A, Ruhr-Universitat Bochum (1997).
  79. Seitz JC, Blencoe JG, J. Chem. Thermodyn., DOI:10.1006/jcht.1996.0107., 28(11), 1207 (1996)
  80. Ozer EO, Platin S, Akman U, Hortacsu O, Can. J. Chem. Eng., DOI:10.1002/cjce.5450740615., 74(6), 920 (1996)
  81. Akgerman A, Erkey C, Orejuela M, Ind. Eng. Chem. Res., DOI:10.1021/ie950422v, 35(3), 911 (1996)
  82. Kiran E, Pohler H, Xiong Y, J. Chem. Eng. Data, DOI:10.1021/je9501503., 41(2), 158 (1996)
  83. Liu DJ, Kwauk M, Li HZ, Chem. Eng. Sci., DOI:10.1016/0009-2509(96)00247-3., 51(17), 4045 (1996)
  84. Roy BC, Goto M, Hirose T, Ind. Eng. Chem. Res., DOI:10.1021/ie950357p., 35(2), 607 (1996)
  85. Kodama D, Kubota N, Yamaki Y, Tanaka H, Kato M, Netsu Bussei, DOI:10.2963/jjtp.10.16., 10, 16 (1996)
  86. Pohler H, Kiran E, J. Chem. Eng. Data, DOI:10.1021/je950273n., 41(3), 482 (1996)
  87. Gokmenoglu Z, Xiong Y, Kiran E, J. Chem. Eng. Data, DOI:10.1021/je950260+., 41(2), 354 (1996)
  88. Seitz JC, Blencoe JG, Bodnar RJ, J. Chem. Thermodyn., DOI:10.1006/jcht.1996.0049., 28(5), 521 (1996)
  89. Knez Z, Skerget M, Sencarbozic P, Rizner A, J. Chem. Eng. Data, DOI:10.1021/je00017a045., 40(1), 216 (1995)
  90. Gonenc ZS, Akman U, Sunol AK, J. Chem. Eng. Data, DOI:10.1021/je00020a013., 40(4), 799 (1995)
  91. Duarte-Garza H, Hwang CA, Kidd MW, Lau WWR, Moeller D, Eubank PT, Holste JC, Hall KR, Gammon BE, Marsh KN, GPA Res. Rep., 1 (1995)
  92. Fenghour A, Wakeham WA, Watson JT, J. Chem. Thermodyn., DOI:10.1006/jcht.1995.0019., 27(2), 219 (1995)
  93. Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., DOI:10.1002/aic.690390113., 39, 127 (1993)
  94. Sengers JMHL, Deiters UK, Klask U, Swidersky P, Schneider GM, Int. J. Thermophys., DOI:10.1007/BF00502114., 14, 893 (1993)
  95. Brachthauser K, Kleinrahm R, Losch HW, Wagner W, Fortschr.-Berichte VDI, R. 8, 371, 1 (1993).
  96. Wells T, Foster NR, Chaplin RP, Ind. Eng. Chem. Res., DOI:10.1021/ie00003a039., 31, 927 (1992)
  97. Langenfeld JJ, Hawthorne SB, Miller DJ, Tehrani J, Anal. Chem., DOI:10.1021/ac00043a014., 64, 2263 (1992)
  98. Gilgen R, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1016/S0021-9614(05)80264-2., 24, 1243 (1992)
  99. Giles NF, Oscarson JL, Rowley RL, Tolley WK, Izatt RM, Fluid Phase Equilib., DOI:10.1016/0378-3812(92)80014-Z., 73, 267 (1992)
  100. Tolley WK, Izatt RM, Oscarson JL, Thermochim. Acta, DOI:10.1016/0040-6031(91)80418-I., 181, 127 (1991)
  101. Duschek W, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1016/0021-9614(90)90172-M., 22, 827 (1990)
  102. Ely J, Haynes W, Bain B, J. Chem. Thermodyn., DOI:10.1016/0021-9614(89)90036-0., 21, 879 (1989)
  103. Tan CS, Liou DC, Ind. Eng. Chem. Res., DOI:10.1021/ie00078a017., 27, 988 (1988)
  104. Magee JW, Ely JF, Int. J. Thermophys., DOI:10.1007/BF00503153., 9, 547 (1988)
  105. Johns AI, Rashid S, Watson JTR, Clifford AA, J. Chem. Soc.-Perkin Trans. 1, DOI:10.1039/f19868202235., 82, 2235 (1986)
  106. Holste JC, Hall KR, Eubank PT, Esper G, Watson MQ, Warowny W, Bailey DM, Young JG, Bellomy MT, J. Chem. Thermodyn., DOI:10.1016/0021-9614(87)90001-2., 19, 1233 (1987)
  107. Scott AC, Johns AI, Watson JTR, Clifford AA, J. Chem. Soc.-Perkin Trans. 1, DOI:10.1039/f19837900733., 79, 733 (1983)
  108. Kuskova NV, Martynets VG, Matizen EV, Sartakov AG, Zhurnal Fiz. Khimii, 57, 2971 (1983)
  109. Iwasaki H, J. Chem. Phys., DOI:10.1063/1.441286., 74, 1930 (1981)
  110. Haepp HI, Warme-und Stoffubertragung, 9, 281 (1976)
  111. Shmonov VM, Shmulovich KI, Dokl. Akad. Nauk SSSR, 217, 935 (1974)
  112. Tsiklis DS, Linshits LR, Rodkina IB, Zhurnal Fiz. Khimii, 48, 1544 (1974)
  113. Tsiklis DS, Linshits LR, Rodkina IB, Zhurnal Fiz. Khimii, 48, 1541 (1974)
  114. le Neindre B, Tufeu R, Bury P, Sengers JV, Berichte der Bunsengesellschaft fur Phys. Chemie, DOI:10.1002/bbpc.19730770410., 77, 262 (1973)
  115. Besserer GJ, Robinson DB, J. Chem. Eng. Data, DOI:10.1021/je60057a033., 18, 137 (1973)
  116. Tsiklis DS, Linshits LR, Tsimmerman SS, Teplofiz. Svoistva Veshchestv Mater., 130 (1971)
  117. Vasserman AA, Golovskii EA, Tsymarnyi VA, Depos. Doc. VINITI, 1 (1970)
  118. Kirillin VA, Ulybin SA, Zherdev EP, Teplofiz. Svoistva Zhidk. Mater. Vses. Teplofiz. Konf., 136 (1970)
  119. Kirillin VA, Ulybin SA, Zherdev EP, Teplofiz. Svoistva Veshchestv Mater., 206 (1970)
  120. Kirillin VA, Ulybin SA, Yherdev EP, Teploenergetika, 16, 94 (1969)
  121. Golovskii EA, Tsymarnyi VA, Teploenergetika, 67 (1969)
  122. Kirillin VA, Ulybin SA, Zherdev EP, Teploenergetika, 16, 92 (1969)
  123. Vukalovich MP, Kobelev VP, Timoshenko NI, Teploenergetika, 81 (1968)
  124. Ku PS, Dodge BF, J. Chem. Eng. Data, DOI:10.1021/je60033a001., 12, 158 (1967)
  125. Sass A, Dodge BF, Bretton RH, J. Chem. Eng. Data, DOI:10.1021/je60033a003., 12, 168 (1967)
  126. Juza J, Kmonicek V, Sifner O, Physica, DOI:10.1016/0031-8914(65)90093-5., 31, 1735 (1965)
  127. Kestin J, Whitelaw JH, Zien TF, Physica, DOI:10.1016/0031-8914(64)90211-3., 30, 161 (1964)
  128. Vukalovich MP, Altunin VV, Timoshenko NI, Teploenergetika, 85 (1963)
  129. Guildner LA, J. Res. Natl. Bur. Stand. Sect. A, 63, 333 (1962)
  130. Vukalovich MP, Altunin VV, Timoshenko NI, Teploenergetika, 56 (1962)
  131. Vukalovich MP, Altunin VV, Teploenergetika, 6, 58 (1959)
  132. Kennedy GC, Am. J. Sci., DOI:10.2475/ajs.252.4.225., 252, 225 (1954)
  133. Reamer HH, Olds RH, Sage BH, Lacey WN, Ind. Eng. Chem., DOI:10.1021/ie50409a019., 36, 88 (1944)
  134. Michels A, Michels C, Wouters H, Proc. R. Soc. London. Ser. A, 153, 214 (1935)
  135. NIST Standard Reference Database 103b (NIST TDE), http://trc.nist.gov/tde.html (2015).
  136. Redlich O, Kwong JNS, Chem. Rev., DOI:10.1021/cr60137a013., 44, 233 (1949)
  137. Soave G, Chem. Eng. Sci., DOI:10.1016/0009-2509(72)80096-4., 27, 1197 (1972)
  138. Zendehboudi S, Rajabzadeh AR, Bahadori A, Chatzis I, Dusseault MB, Elkamel A, Lohi A, Fowler M, Ind. Eng. Chem. Res., DOI:10.1021/ie303106z., 53(4), 1645 (2014)
  139. Zendehboudi S, Shafiei A, Bahadori A, James LA, Elkamel A, Lohi A, Chem. Eng. Res. Des., DOI:10.1016/j.cherd.2013.08.001., 92(5), 857 (2014)