화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 891-899, November, 2016
실리카 나노입자를 이용한 아미드 . 이미드 공중합체의 합성과 성질
Synthesis and Properties of Copoly(amide-imide) Based on Silica Nanoparticles
E-mail:
초록
아미드기가 포함된 개질화된 silica nanoparticle에 폴리이미드 유도체를 3차 아민계 화합물인 1,4-diazabicyclo [2.2.2]octane를 이용하여 공중합하여 합성한 폴리아미드-이미드의 열적 성질 및 물리적 특성을 검토하였다. 단위체합성(MP, AMP, PA, PAB)과 DABCO를 이용한 중합체의 합성(PAAMP1, PABAMP1)을 EA, FTIR, TGA, XPS, XRD, SEM 등을 통하여 이미드화의 공중합체를 확인하였다. XPS data에서 PAB의 Br(3d)가 68.63 ev에 중합된 것이 확인되었으나 PABAMP1에서는 거의 나타나지 않았고 용매에 대한 용해도 조사에서 공중합체의 강인한 이미드기와 말단 부분의 실록산 세그멘트가 용해도에 영향을 끼쳤으며 극성 용매인 NMP에서 용매화 현상으로 접촉각이 85~88° 에서 63~65° 로 감소하여 파라-파라 위치의 이미드 공중합체에서도 강한 흡습성을 보이고 있다.
Polyamide-imide was prepared through copolymerization polyimide derivative and tertiary amine compound (1,4-diazabicyclo [2.2.2] octane) on modified silica nanoparticles with amide group and thermal and physical characteristics were investigated. Polymer compounds (PAAMP1, PABAMP1) were polymerized with monomer compounds (MP, AMP, PA, PAB) and DABCO and the imidization of polymer was confirmed through EA, FTIR, TGA, XPS, XRD and SEM. The Br(3d) of PAB was polymerized at 68.63 eV but one of PABAMP1 was not, which was found in XPS analysis. Since a tough imide group and siloxane segments of end-group of copolymers had influence on the solubility of solvents and the contact angle of NMP which is a polar solvent decreased from 85-88o to 63-65o owing to solvation. Strong hygroscopicity was found in the imide copolymer of para-para position.
  1. Lee EY, Hwang T, Nam JD, Polym. Korea, 36(4), 448 (2012)
  2. Liu JG, Zhao XJ, Fan HSL, Yang SY, High Perform. Polym., 18, 851 (2006)
  3. Stevens MP, Polymer Chemistry an Introduction, 3rd Ed., Oxford University Press Inc., New York, p 106 (1999).
  4. Margolis JM, Engineering Thermoplastics, Margolis JM, Editor, Marcel Dekker Inc., New York, Editor, p 315 (1985).
  5. Yokota R, Yamamoto S, Yano S, Sawaguchi T, Hasegawa M, Sato R, High Perform. Polym., 13, S61 (2001)
  6. Han JE, Jeon BK, Goo BJ, Cho SH, Kim SH, Lee KS, Park YH, Lee JY, Polym. Korea, 33(1), 91 (2009)
  7. Halim A, Gurr PA, Blencowe A, Bryant G, Kentish SE, Qiao GG, Polymer, 54(2), 520 (2013)
  8. Ghosh M, Mittal KL, Editors, Polyimides: Fundamentalsand Applications, Marcel Dekker, NewYork, 1996.
  9. Cheil Industries Inc., Korea Patent, WO2013085153A1 (2013).
  10. Min JH, Min SK, Appl. Chem. Eng., 21(1), 34 (2010)
  11. Yang Y, Dan Y, Colloid Polym. Sci., 281, 794 (2003)
  12. Park S, Chae S, Rhee J, Kang SJ, Bull. Korean Chem. Soc., 31, 2279 (2010)
  13. Niwa M, Nagaoka S, Kawakami H, J. Appl. Polym. Sci., 100(3), 2436 (2006)
  14. Bender TP, Wang ZY, J. Polym. Sci. A: Polym. Chem., 38(21), 3991 (2000)
  15. Honma I, Nishikawa O, Sugimoto T, Nomura S, Nakajima H, Fuel Cells, 2, 52 (2002)
  16. Dean JA, Lange,s Handbook of Chemistry, McGraw-Hill Professional, USA, 1999.
  17. Ha SY, Oh BK, Lee YM, Polymer, 36(18), 3549 (1995)
  18. Jim MY, Jumg HG, Choi KY, Yoon CM, Polym. Korea, 21(6), 973 (1997)
  19. Kano Y, Akiyama S, Polymer, 34, 376 (1993)