화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 900-906, November, 2016
신축성 기판에 삽입된 은 나노와이어 네트워크 전극의 전사특성 조절 및 유기태양전지 적용
Controlled Transfer Behavior of Embedded Ag-nanowire Network Electrode in Stretchable Substrate and Its Application to Organic Solar Cell
E-mail:
초록
은 나노와이어는 유연/신축 투명전극의 전도성 재료로 많은 관심을 받고 있다. 본 연구에서는 실란 커플링제 표면 개질을 통해 폴리디메틸실록산 탄성체 기판에 은 나노와이어 네트워크 구조를 전사, 삽입시키고 그 전사율을 제어하였다. 은 나노와이어가 삽입된 탄성체 기판은 유리 위에 은 나노와이어 네트워크를 코팅하고 이어 실록산폴리머를 코팅, 경화시킨 후, 유리로부터 이를 떼어 내어 제조하였다. 은 나노와이어의 전사율과 두께는 네트워크 구조체 위에 실란계 개질제(메타크릴옥시프로필트리메틸실란; MPS, 및 옥타데실트리클로로실란; OTS)를 코팅하여 조절하였는데, 이 탄성체 투명필름은 MPS로 개질 시 투과율이 20% 증가했고, 낮은 표면 거칠기로 유기박막 소자에 더 적합했다. OTS 표면개질 조건으로 제작한 투명전극은 40%의 신장조건으로 200회의 신축성 테스트를 했을 때 약 3배로 저항이 증가하였다. 최종적으로 MPS 개질 조건에서 3.2%의 광전효율을 갖는 은 나노와이어 전극형 유기태양전지를 제작하였다.
Recently, silver nanowires (AgNWs) have had a great interest as a conducting materials for flexible and transparent electrodes. In this paper, we studied the embedded network structure formation of AgNWs in polydimethylsiloxane (PDMS) by stamping transfer process and various surface treatments. We have designed various conditions of AgNWs surfaces using silane-coupling modifiers. Transfer yield of AgNWs was adjusted by the variation of surface treatment condition with silane modifier coating such as methacryloxypropyltrimethoxysilane (MPS) and octadecyltrichlorosilane (OTS) on top of AgNWs. Transparency of embedded AgNWs film has increased up to 20% at the optimum surface treatment condition. Especially, MPS treatment process was found to be appropriate for thin film organic device substrate due to its generation of transferred AgNWs with low surface roughness. Transparent electrodes with OTS treatment showed resistivity with three times at 40% elongation at 200 cycle test. An organic solar cell with 3.2% of power conversion efficiency was fabricated with MPS-treated AgNW networks in a PDMS substrate.
  1. Cui J, Wang A, Edleman NL, Ni J, Lee P, Armstrong NR, Marks TJ, Adv. Mater., 13(19), 1476 (2001)
  2. Girotto C, Rand BP, Steudel S, Genoe J, Heremans P, Org. Electron., 10, 735 (2009)
  3. Hecht DS, Hu LB, Irvin G, Adv. Mater., 23(13), 1482 (2011)
  4. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L, Thin Solid Films, 22, 451 (2004)
  5. Kim BC, Jeong HT, Raj CJ, Kim YR, Cho BB, Yu KH, Synth. Met., 207, 116 (2015)
  6. Krebs FC, Org. Electron., 10, 761 (2009)
  7. Kang JW, Jeong WI, Kim JJ, Kim HK, Kim DG, Lee GH, Electrochem. Solid State Lett., 10(6), J75 (2007)
  8. Park YS, Choi KH, Kim HK, J. Phys. D-Appl. Phys., 42, 235109 (2009)
  9. Liu TY, Liao HC, Lin CC, Hu SH, Chen SY, Langmuir, 22(13), 5804 (2006)
  10. Liu Z, Li J, Yan F, Adv. Mater., 25, 4298 (2013)
  11. Zou J, Yip HP, Hau SK, Jen AKY, Appl. Phys. Lett., 96, 203301 (2010)
  12. Miller MS, O’Kane JC, Niec A, Carmichael RS, Carmichael TB, ACS Appl. Mater. Interfaces., 5, 10165 (2013)
  13. Lim SC, Kim SH, Lee JH, Kim MK, Kim DJ, Zyung T, Synth. Met., 148, 75 (2005)
  14. Lim JA, Lee WH, Kwak D, Cho K, Langmuir, 25(9), 5404 (2009)
  15. Kinloch AJ, Adhesion and Adhesives Science and Technology, Cambridge University Press, Cambridge, U.K., Chapter 2, p 33 (1987).
  16. Hauger TC, Al-Rafia SMI, Buriak JM, ACS Appl. Mater. Interfaces, 5, 12663 (2013)
  17. Kim TG, Canlier A, Kim GH, Choi JH, Park MK, Han SM, ACS Appl. Mater. Interfaces, 5, 788 (2013)
  18. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T, Adv. Funct. Mater., 25(21), 3114 (2015)
  19. Virkar A, Mannsfeld S, Oh JH, Toney MF, Tan YH, Liu GY, Scott JC, Miller R, Bao Z, Adv. Funct. Mater., 19(12), 1962 (2009)
  20. Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y, Chem. Phys. Lett., 411(1-3), 138 (2005)