화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.5, 610-620, September, 2000
아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성
Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperaute Polymerizaion of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification
E-mail:
초록
아세트산비닐(VAc)을 아조비스디멜틸발레로니트릴(ADMVN) 및 삼차부틸알코올(TBA)을 각각 개시제 및 용매로 하여 30, 40 및 50℃에서 용액중합하였다. 합성된 폴리아세트산비닐(PVAc)을 비누화함으로써 고분자량 혼성배열 폴리비닐알코올(PVA)을 제조하였다. 중합 조건들이 전환률, 가지화도 및 PVAc와 PVA의 분자량에 미치는 영향을 고찰하였다. TBA에서의 VAc의 중합 속도는 ADMVN 농도의 0.49승에 비례하였고, 이는 이론치 0.5와 잘 일치하였다. 저온에서 개시가 가능한 ACMVN 및 낮은 사슬이동상수를 갖는 TBA를 사용함으로써 고분자량 및 고수율의 PVA가 얻어졌다. PVAc의 평균 중합도는 전환률 약 35%부처 70%의 범위에서 10000∼13000이었고, 이를 비누화하여 얻은 PVA의 평균 중합도는 2400∼6100이었다. 교대배열 다이애드기 함량은 중합온도를 낮춤에 따라 조금씩 증가하였고, 중합시 TBA의 입체장애 효과 때문에 TBA의 양을 증가시킴에 따라서도 증가하였다.
vinyl acetate (VAc) was polymerized at 30, 40, and 50℃ using 2,2''-azobis(2,4-dimethylvaleronitrile)(ADMVN) and tertiary butyl alcohol(TBA) as the initiator and the solvent, respectively. High molecular weight(HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl aetate) (PVAc) synthesized. the effect of polymerization conditions were investigaed in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PVAc having average degree of polymerization(Pn) of 10000∼13000 was obtained at the conversion of 35∼70%. Saponification of so prepared PVAc yielded PVA having Pn of 2400∼6100. The syndiotactic diad content increased with decreasing polymerization tmeperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.
  1. Marten FL, "Encyclopedia of Polymer Science and Technology," eds. by H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, and J.I. Kroschwitz, vol. 17, p. 167-180 and p. 188, John Wiley and Sons, New York, 1985 (1985)
  2. Toyoshima K, "Polyvinyl Alcohol," ed. by C.A. Finch, p. 339-388, John Wiley and Sons, New York, 1985 (1985)
  3. Sakurada I, "Polyvinyl Alcohol Fibers," ed. by M. Lewin, p. 3-9 and p. 361-386, Marcel Dekker, New York, 1985 (1985)
  4. Masuda M, "Polyvinyl Alcohol-Development," ed. by C.A. Finch, p. 403-422 and p. 711, John Wiley and Sons, New York, 1991 (1991)
  5. Lyoo WS, Ha WS, Polymer, 37(14), 3121 (1996) 
  6. Lyoo WS, Kim BC, Ha WS, Polym. Eng. Sci., 37(7), 1259 (1997) 
  7. Lyoo WS, Kim BC, Ha WS, Polym. J., 30, 424 (1998) 
  8. Cho JD, Lyoo WS, Chvalun SN, Blackwell J, Macromolecules, 32(19), 6236 (1999) 
  9. Lanthier R, U.S. Patent, 3,303,174 (1967)
  10. Sorokin AY, Kuznetsova VA, Korneva TD, USSR Patent, 507,590 (1976)
  11. Rozenberg ME, Nikitina SG, Khvatova GI, USSR Patent, 594,124 (1978)
  12. Nikolaev AF, Brlogorodskaya KV, Kukushkina NP, Pigulevskaya OA, USSR Patent, 1,016,305 (1978)
  13. Wu TC, West JC, U.S. Patent, 4,463,138 (1982)
  14. Kamiake K, Ueda F, Japan Patent, 62-064,807 (1987)
  15. Yamamoto T, Seki S, Fukae R, Sangen O, Kamachi M, Polym. J., 22, 567 (1990) 
  16. Kwark YJ, Lyoo WS, Ha WS, Polym. J., 28, 851 (1996) 
  17. Lyoo WS, Lee SG, Kim JP, Han SS, Lee CJ, Colloid Polym. Sci., 276, 951 (1998) 
  18. Lyoo WS, Lee CJ, Park KH, Kim N, Kim BC, Int. J. Polym. Mater., 46, 181 (2000)
  19. Yamamoto T, Seki S, Hirota M, Kamachi M, Polym. J. Short Commun., 19, 1417 (1987)
  20. Yamamoto T, Yoda S, Takase H, Saso T, Sangen O, Fukae R, Kamachi M, Sato T, Polym. J., 23, 185 (1991) 
  21. Lyoo WS, Ha WS, J. Polym. Sci. A: Polym. Chem., 35(1), 55 (1997) 
  22. Lyoo WS, Blackwell J, Ghim HD, Macromolecules, 31(13), 4253 (1998) 
  23. Lyoo WS, Ha WS, Polymer, 40(2), 497 (1999) 
  24. Ito K, J. Polym. Sci. A: Polym. Chem., 10, 1481 (1972) 
  25. Minsk LM, Taylor EW, U.S. Patent, 2,582,055 (1952)
  26. Conix A, Smets J, J. Polym. Sci., 10, 525 (1953) 
  27. Okamura S, Motoyama T, J. Polym. Sci., 17, 428 (1955) 
  28. Bamford CH, Jenkins AD, Johnston R, J. Polym. Sci., 29, 355 (1958) 
  29. Sorenson WR, Campbell TW, "Preparative Methods of Polymer Chemistry," p. 238, Wiley Interscience, New York (1968)
  30. Ueda M, Kajitani K, Macromol. Chem., 108, 138 (1967) 
  31. Conn WR, Neher HT, J. Polym. Sci., 5, 355 (1950) 
  32. Ukita J, Kobunshi Kagaku, 10, 441 (1953)
  33. Zutty NL, Welch FJ, J. Polym. Sci., 45, 264 (1960) 
  34. Noro K, Takida H, Kobunshi Kakaku, 19, 245 (1962)
  35. Noro K, Takida H, Japan Patent, 37-10,593 (1962)
  36. Hashimoto K, Sakaguchi Y, Kobunshi Kagaku, 20, 312 (1963)
  37. Hashimoto K, Sakaguchi Y, Kobunshi Kagaku, 20, 316 (1963)
  38. Friedlander HN, Harris HE, Pritchard JG, J. Polym. Sci., 4, 649 (1966)
  39. Noro K, Okamoto M, Japan Patent, 44-27,818 (1969)
  40. Ivanchev SS, Shumnyi LV, Konovalenk VV, Rozenberg ME, Ezhankova LL, Trapeznikova TV, USSR Patent, 712,723 (1980)
  41. Lyoo WS, Kwark YJ, Ha WS, J. Korean Fiber Soc., 33, 321 (1996)
  42. Imai K, Shiomi T, Oda N, Otsuka H, J. Polym. Sci. A: Polym. Chem., 24, 3225 (1986) 
  43. Imai K, Shiomi T, Tezuka Y, Kawanishi T, Jin T, J. Polym. Sci. A: Polym. Chem., 26, 1962 (1988)
  44. Lyoo WS, Kim BC, Lee CJ, Ha WS, Eur. Polym. J. Short Commun., 33, 785 (1997)
  45. Brandrup J, Immergut EH, Grulke EA, "Polymer Handbook," p. 2/143-2/149, John Wiley and Sons, New York, 1999 (1999)
  46. Nakajima A, Kobunshi Kagaku, 11, 142 (1954)
  47. Bovey FA, Jelinski LW, "Chain Structure and Conformation of Macromolecules," p. 61, Academic Press, New York, 1982 (1982)
  48. Lyoo WS, Kim BJ, Ha WS, J. Korean Fiber Soc., 33, 231 (1996)
  49. Cox BG, "Modern Liquid Phase Kinetics," Oxford Univesity Press, New York, 1994 (1994)