화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.6, 854-862, December, 2016
분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구
A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis
E-mail:
초록
최근 화석연료를 대체할 친환경 신재생에너지에 대한 요구가 증가하면서 수소에너지가 미래 대체에너지원으로서 주목받고 있다. 수소를 생산하는 방법 중 수전해 기술은 에너지효율과 안정성이 뛰어난 장점이 있지만, 산소발생반응시 발생하는 높은 과전압은 여전히 단점으로 지적되고 있다. 본 연구에서는 분무열분해 공정을 통하여 Co 전구체로부터 Co3O4를 제조하였다. 또한, urea, sucrose, citric acid의 유기물첨가제를 사용하여 다양한 입자 크기와 표면형상을 가지는 Co3O4를 제조하였고, 필요에 따라 추가로 열처리를 실시하였다. 합성한 Co3O4의 물리적 특성을 분석하기 위해 X-선 회절 분석(XRD)으로 결정성을 조사하였고, 주사전자현미경(SEM)과 투과전자현미경(TEM)으로 입자형상 및 표면을 분석하였다. 질소 흡·탈착 시험을 통해 촉매의 비표면적 및 기공부피를 측정하였고, 질소도핑을 확인하기 위해 X-선 광전자 분광법(XPS)을 사용하였다. 촉매의 산소발생반응 활성을 알아보기 위해 3전극 셀에서 선형주사전위법(LSV)으로 전기화학적 거동을 분석하였다. 첨가제를 사용하지 않은 Co3O4가 가장 우수한 활성을 보였고, 이는 분무열분해법을 통하여 상대적으로 작은 입자형성과 높은 비표면적의 영향인 것으로 판단된다.
As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, Co3O4 catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, Xray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of Co3O4 catalysts. As a result, bare-Co3O4 which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.
  1. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM, Nat. Mater., 6(3), 241 (2007)
  2. Jeong JH, Shin EK, Jeong JJ, Na IC, Chu CH, Park KP, Korean Chem. Eng. Res., 52(6), 695 (2014)
  3. Yoo SJ, Jeon TY, Sung YE, J. Korean Electrochem. Soc., 12(1), 11 (2009)
  4. http://www.h2journal.com/displaynews.
  5. Lee J, Yi Y, Uhm S, J. Korean Ind. Eng. Chem., 19(4), 357 (2008)
  6. Park YB, Lim H, Woo HC, Korean Chem. Eng. Res., 54(1), 94 (2016)
  7. Shin JS, Cho SJ, Choi SH, Qasim F, Lee HN, Park JH, Lee WJ, Lee ES, Park SJ, Korean Chem. Eng. Res., 52(4), 459 (2014)
  8. Kim D, Han GB, Park NK, Lee TJ, Kang M, Korean Chem. Eng. Res., 51(4), 513 (2013)
  9. Kim JW, Sim KS, Kim JD, Han SD, Jung KD, J. Korean Hydrogen Energy Society, 12(1), 11 (2001)
  10. Yoon DJ, Koh JH, Trans. Korean Hydrogen and New Energy Society, 20(5), 416 (2009)
  11. Choi HS, Yim DS, Rhyu CH, Kim JC, Hwang GJ, Trans. Korean Hydrogen and New Energy Society, 23(2), 117 (2012)
  12. 이택홍, Journal of Electrical world monthly magazine, 459, 14 (2015)
  13. Santos DMF, Sequeira CAC, Figueiredo JL, Quim. Nova, 36(8), 1176 (2013)
  14. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB, J. Am. Chem. Soc., 136(7), 2843 (2014)
  15. Krol RVD, Liang Y, Schoonman J, J. Mater. Chem., 18, 2311 (2008)
  16. Artero V, Kerlidou MC, Fontecave M, Angew. Chem.-Int. Edit., 50, 7238 (2011)
  17. Seabold JA, Choi KS, Chem. Mater., 23(5), 1105 (2011)
  18. Lee YM, Suntivich J, May KJ, Perry EE, Horn YS, J. Phys. Chem. Lett., 3, 399 (2012)
  19. Bhosale RR, Kumar A, van den Broeke LJP, Gharbia S, Dardor D, Jilani M, Folady J, Al-Fakih MS, Tarsad MA, Int. J. Hydrog. Energy, 40(4), 1639 (2015)
  20. Gokon N, Murayama H, Nagasaki A, Kodama T, Sol. Energy, 83(4), 527 (2009)
  21. Lee SH, Yu SH, Lee JE, Jin AH, Lee DJ, Lee NH, Jo HG, Shin KS, Ahn TY, Kim YW, Choe HM, Sung YE, Hyeon TH, Nano Lett., 13(9), 4249 (2013)
  22. Zhang JH, Feng JY, Zhu T, Liu ZL, Li QY, Chen SZ, Xu CW, Electrochim. Acta, 196(1), 661 (2016)
  23. Xie K, Masa J, Madej E, Yang F, Weide P, Dong W, Muhler M, Schuhmann W, Xia W, ChemCatChem, 7, 3027 (2015)
  24. Wang X, Zheng Y, Yuan J, Shen J, Wang AJ, Niu L, Huang S, Electrochim. Acta, 212(10), 890 (2016)
  25. Li L, Tian T, Jiang J, Ai L, J. Power Sources, 294(30), 103 (2015)
  26. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J, Nano Energy, 12, 1 (2015)
  27. Chen S, Zhao Y, Sun B, Ao Z, Xie X, Wei Y, Wang G, ACS Appl. Mater. Interfaces, 7, 3306 (2015)
  28. Rosen J, Hutchings GS, Jiao F, J. Am. Chem. Soc., 135(11), 4516 (2013)
  29. Ryu WH, Yoon TH, Song SH, Jeon SW, Park YJ, Kim ID, Nano Lett., 13(9), 4190 (2013)
  30. Solmaz R, Kardas G, Electrochim. Acta, 54(14), 3726 (2009)
  31. Chen R, Wang HY, Miao J, Yang H, Liu B, Nano Energy, 11, 333 (2015)
  32. Kibria AKMF, Tarafdar SA, Int. J. Hydrog. Energy, 27(9), 879 (2002)
  33. Prabu M, Ketpang K, Shanmugam S, Nanoscale, 6, 3173 (2014)
  34. Lu X, Zhao C, J. Mater. Chem. A, 1, 12053 (2013)
  35. Pan L, Li L, Tian D, Li C, Wang J, JOM, 66(6), 1035 (2014)
  36. Liu SY, Li LJ, Patterson NA, Manthiram A, J. Electrochem. Soc., 163(2), A150 (2016)
  37. Castro EB, Gervasi CA, Int. J. Hydrog. Energy, 25(12), 1163 (2000)
  38. Koza JA, He Z, Miller AS, Switzer JA, Chem. Mater., 24(18), 3567 (2012)
  39. Sun C, Rajasekhara S, Chen Y, Goodenough JB, Chem. Commun., 47, 12852 (2011)
  40. Bahlawane N, Rivera EF, Kohse-Hoinghaus K, Brechling A, Kleineberg U, Appl. Catal. B: Environ., 53(4), 245 (2004)
  41. Blakemore JD, Gray HB, Winkler JR, Muller AM, ACS Catal., 3, 2497 (2013)
  42. Buyukyazi M, Hegemann C, Lehnen T, Tyrra W, Mathur S, Inorg. Chem., 53(20), 10928 (2014)
  43. Barrera CE, Flores JCM, Gonzalez GF, Lopez MO, Rosas RC, Surf. Sci. J., 5, 9 (2013)
  44. Won JM, Kim JH, Choi YJ, Cho JS, Kang YC, Ceram. Int., 42, 5461 (2016)
  45. Ko YN, Choi SH, Kang YC, J. European Ceram. Soc., 33(7), 1335 (2013)
  46. Ko YN, Kang YC, Ceram. Int., 38, 2071 (2012)
  47. Wang JF, Liu W, Chen JX, Wang HL, Liu S, Chen SG, Electrochim. Acta, 188, 210 (2016)
  48. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD, J. Phys. Chem. C, 113, 15068 (2009)
  49. Shi N, Cheng W, Zhou H, Fan T, Niederberger M, Chem. Commun., 51, 1338 (2015)
  50. Yao L, Zhong H, Deng CW, Li XF, Zhang HM, J. Energy Chem., 25, 153 (2016)
  51. Park GD, Cho JS, Kang YC, Nano Energy, 17, 17 (2015)
  52. Tian GL, Zhao MQ, Yu D, Kong XY, Huang JQ, Zhang Q, Wei F, Small, 10, 2251 (2014)
  53. Gao MR, Cao X, Gao Q, Xu YF, Zheng YR, Jiang J, Yu SH, ACS Nano, 8, 3970 (2014)
  54. Chen S, Duan JJ, Jaroniec M, Qiao SZ, Adv. Mater., 26(18), 2925 (2014)
  55. Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH, J. Am. Chem. Soc., 134(6), 2930 (2012)