화학공학소재연구정보센터
Advanced Functional Materials, Vol.26, No.36, 6612-6618, 2016
Imprinting of Local Metallic States into VO2 with Ultraviolet Light
Materials exhibiting electronic phase transitions have attracted widespread attention. By switching between metallic and insulating states under external stimuli, the accompanying changes in the electrical and optical properties can be harnessed in novel electronic and optical applications. In this work, a laterally confined conductive pattern is inscribed into an otherwise insulating VO2 thin film using ultraviolet light, inducing an almost four orders of magnitude decrease in electrical resistivity of the exposed area. The metallic imprint remains in VO2 after ultraviolet light exposure and can be completely erased by a short low temperature anneal. The ability to optically pattern confined metallic structures provides new opportunities for reconfigurable photonic and plasmonic structures, as well as re-writable electric circuitry.