Polymer(Korea), Vol.24, No.5, 721-727, September, 2000
전해 니켈도금 처리에 따른 탄소섬유/에폭시 수지 복합재료의 섬유표면 및 기계적 계면전단 강도
Fiber Surfaces and Interlaminar Shear Strengths of Electrolytic Ni-Plated Carbon Fiber/Epoxy Resin Composites
E-mail:
초록
탄소섬유/에폭시 수지 복합재료의 기계적 계면 결합력을 증가시키기 위해 탄소섬유를 전해니켈도금 표면처리하였다. 탄소섬유의 표면특성과 복합재료의 최종 기계적 물성은 각각 X-ray photoelectron spectroscepy(XPS)와 interlaminar shear strength(ILSS)측정을 통하여 알아보았다. 본 실험결과, 전해 니켈도금은 복합재료의 계면, 즉 강화재인 탄소섬유와 매트릭스간의 계면 결합력에 크게 영향을 미침을 알 수 있었으며, 특히 니켈도금 처리된 탄소섬유 표면에서 O1s/C1s 비의 증가와 NiO 그룹 및 금속 니켈의 형성은 기계적 특성인 ILSS증가의 요인으로 작용함을 알 수 있었다. 또한, O1s/C1s비는 복합재료의 ILSS와 밀접한 관계가 있음을 고찰하였다.
The electrolytic plating of a metallic nickel on carbon fiber surfaces was carried out to improve mechanical interfacial properties of carbon fiber/epoxy resin composites. The surface characteristics of carbon fibers and the mechanical interfiacial properties of final composites were characterized by X-ray photoelectron spectroscopy(XPS) and interlaminar shear strength(ILSS), respectively. It was found that the electrolytic Ni-plating conditions significantly affected the degree of adhesion at interfaces between carbon fibers and epoxy resin matrix in a composite system. Especially, the increase of O1s/C1s ratio, production of NiO groups, and formation of metallic nickel on the nickel-plated carbon fiber surfaces led to an increase of the ILSS of the composites. Also, the ILSS of the composites was greatly correlated with the O1s/C1s ratio of the carbon fibers treated in this work.
- Schwartz MM, "Composite Materials Handbook," 2nd Ed., McGraw-Hill, New York, 1992 (1992)
- Fitzer E, "Carbon Fibers and Their Composites," Springer-Verlag, New York, 1985 (1985)
- Park SJ, "Interfacial Forces and Fields: Theory and Applications," ed. by J.P. Hsu, chap. 9, Marcel Dekker, New York, 1999 (1999)
- Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998)
- Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998)
- Krekel G, Huttinger KJ, Hoffman WP, Silver DS, J. Mater. Sci., 29(11), 2968 (1994)
- Donnet JB, Ehrburger P, Carbon, 15, 143 (1973)
- Park SJ, Kim MH, J. Mater. Sci., 35(8), 1901 (2000)
- Donnet JB, Bansal RC, "Carbon Fibers," 2nd Ed., Marcel Dekker, New York, 1990 (1990)
- Beydon R, Bernhart G, Segui Y, Surf. Coat. Technol., 126, 39 (2000)
- Hage E, Costa SF, Pessan LA, J. Adhes. Sci. Technol., 11(12), 1491 (1997)
- Lynch ET, Kershaw JP, "Metal Matrix Composites," CRC, Cleveland, 1972 (1972)
- Charrier JM, "Polymeric Materials and Processing," Hanser, New York, 1990 (1990)
- Soni PR, Rajan TV, Ramakrishnan P, Met. Mater. Proc., 8, 187 (1996)
- Abraham S, Pai BC, Satyanarayana KG, Vaidyan VK, J. Mater. Sci., 25, 2839 (1990)
- Delpeux S, Beguin F, Benoit R, Erre R, Manolova N, Rashkov I, Eur. Polym. J., 34, 905 (1998)
- Moravec TJ, Orent TW, J. Vac. Sci. Technol., 18, 226 (1981)
- Fierro G, Ingo GM, Mancia F, Corrosion, 45, 814 (1989)
- Jones C, Sammann E, Carbon, 28, 509 (1990)
- Bicelli LP, Razzini G, Malitesta C, Sabbatini L, Int. J. Hydrog. Energy, 12, 219 (1987)
- Rats D, Vandenbulcke L, Herbin R, Benoit R, Erre R, Serin V, Sevely J, Thin Solid Films, 270(1-2), 177 (1995)
- Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W, J. Fluor. Chem., 84, 127 (1997)
- Gardner SD, Singamsetty CSK, Booth GL, He GR, Pittman CU, Carbon, 33, 587 (1995)
- Yang WP, Costa D, Marcus P, J. Electrochem. Soc., 141(10), 2669 (1994)
- Brown NMD, Hewitt JA, Meenan BJ, Surf. Interface Anal., 18, 187 (1992)
- Mcintyre NS, Gook MG, Anal. Chem., 47, 2208 (1975)
- Wagner CD, Riggs WM, Davis LE, Moulder JF, "Handbook of X-ray Photoelectron Spectroscopy," Perkin-Elmer Corp., Norwalk, 1979 (1979)
- Lantelme F, Seghiouer A, Derja A, J. Appl. Electrochem., 28(9), 907 (1998)
- Kimura T, Ishiguro A, Andou Y, Fujita K, J. Power Sources, 85(1), 149 (2000)
- Biniak S, Szymanski G, Siedlewski J, Swiatkowski A, Carbon, 35, 1799 (1997)
- Dilsiz N, Ebert E, Weisweiler W, Akovali G, J. Colloid Interface Sci., 170(1), 241 (1995)
- Ho CT, J. Mater. Res., 10, 1730 (1995)