Applied Surface Science, Vol.389, 849-857, 2016
Synthesis, surface structure and optical properties of double perovskite Sr2NiMoO6 nanoparticles
Double perovskite Sr2NiMoO6 nanoparticles were synthesized via the chemical sol-gel route. The phase formation was investigated through X-ray polycrystalline diffraction (XRD) and Rietveld refinements. The perovskite crystallized in worm-like nano-grains with the diameter of 20-50 nm. The optical properties were measured by the optical absorption spectra. The nanoparticles present an indirect allowed transition with a narrow band gap of 2.1 eV. Sr2NiMoO6 nanoparticles have obvious photocatalytic ability on the degradation of Rhodamine B (RhB) solutions under the irradiation of visible light. The transport behaviors of the excitons were investigated from the photoluminescence spectra and the corresponding decay lifetimes. Sr2NiMoO6 nanoparticles present several advantages for photocatalysis such as the appropriate band energy positions, the quenched luminescence, and the coexistence of multivalent ions in the lattices. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Inorganic compounds;Double perovskite;Photocatalysis;Electronic band structure;Optical properties;Solar materials