Applied Surface Science, Vol.390, 924-928, 2016
Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications
Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nano structures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:ZnO nanorod;Structural degradation;Encapsulation;High resolution transmission electron microscopy (HRTEM)