Applied Surface Science, Vol.387, 1110-1115, 2016
Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research
Based on first-principle study, the adsorption mechanism of Cs on (100) crystal plane of GaN nanowire surface with coverage of 1/12 monolayer is explored. It is discovered that the most stable adsorption site is B-N because of its lowest adsorption energy. The work function of GaN nanowire surface is reduced by 1.69 eV and will be further reduced with increasing Cs adsorption, which promotes the development of negative electron affinity (NEA) state of the materials. Furthermore, Cs adatom will make a great influence on the surface atomic structure, oppositely, little influence on the center atomic structure. There appears a dipole moment valued -6.93 Debye on the nanowire surface contributed to the formation the heterojunction on the surface, which is beneficial to the photoelectrons liberation. After Cs adsorption, the valence band and conduction band both move to lower energy side. The surface states mainly result from the hybridization of Cs 5s state with Ga 4p state and N 2p state. This study can help us to further experiment on the Cs adsorption processing on GaN nanowire and improve the photoemission performance of GaN nanowire devices. (C) 2016 Elsevier B.V. All rights reserved.