화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.479, No.3, 469-475, 2016
Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering
The natural healing capacity of damaged articular cartilage is poor, rendering joint surface injuries a prime target for regenerative medicine. While autologous chondrocyte or mesenchymal stem cell (MSC) implantation can be applied to repair cartilage defects in young patients, no appropriate long-lasting treatment alternative is available for elderly patients with osteoarthritis (OA). Multipotent progenitor cells are reported to present in adult human articular cartilage, with a preponderance in OA cartilage. These facts led us to hypothesize the possible use of osteoarthritis-derived chondrocytes as a cell source for cartilage tissue engineering. We therefore analyzed chondrocyte- and stem cell-related markers, cell growth rate, and multipotency in OA chondrocytes (OACs) and bone marrow-derived MSCs, along with normal articular chondrocytes (ACS) as a control. OACs demonstrated similar phenotype and proliferation rate to MSCs. Furthermore, OACs exhibited multilineage differentiation ability with a greater chondrogenic differentiation ability than MSCs, which was equivalent to ACs. We conclude that chondrogenic capacity is not significantly affected by OA, and OACs could be a potential source of multipotent progenitor cells for cartilage tissue engineering. (C) 2016 Elsevier Inc. All rights reserved.