화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.108, 17-26, 2016
A radiofrequency heated reactor system for post-combustion carbon capture
Several problems with stabilization of electricity grid system are related to the time lag between the electricity supply and demand of the end users. Many power plants run for a limited period of time to compensate for increased electricity demand during peak hours. The amount of CO2 generated by these power installations can be substantially reduced via the development of new demand side management strategies utilizing CO2 absorption units with a short start-up time. The sorbent can be discharged using radiofrequency (RF) heating to fill the night-time valley in electricity demand helping in the stabilization of electricity grid. Herein a concept of RF heated fixed bed reactor has been demonstrated to remove CO2 from a flue gas using a CaCO3 sorbent. A very stable and reproducible operation has been observed over twenty absorption-desorption cycles. The application of RF heating significantly reduced the transition time required for temperature excursions between the absorption and desorption cycles. The effect of flow reversal during desorption on desorption time has been investigated. The desorption time was reduced by 1.5 times in the revered flow mode and the total duration of a single absorption-desorption cycle was reduced by 20%. A reactor model describing the reduced desorption time has been developed. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.