Polymer(Korea), Vol.25, No.1, 98-107, January, 2001
팬텀 모델 제작을 위한 SBS/도전체/유전체 3상 복합재료의 유전특성 연구
A Study on the Dielectric Properties of SBS/Conductive Filler/Dielectrics Composites for Phantom Model
E-mail:
초록
팬텀 모델 제작을 위해 도전체로서 전도성 카본블랙을, 유전체로서(Ba, Ca)(Sn, Ti)O3와 SrTiO3를 적용한 SBS 복합재료의 유전 특성과 형상 회복 특성을 조사하였다. 카본블랙만을 첨가한 복합재료는 카본블랙 함량이 증가함에 따라 복소유전율과 도전율이 증가하였으며, 주파수가 증가함에 따라 유전율이 감소하고 도전율은 증가하는 주파수 의존 특성을 보였다. 카본블랙과 유전체를 동시에 적용한 3상 복합재료는 동일한 카본블랙 함량에 대해서 유전체의 함량이 증가할수록 복소유전율과 도전율이 증가하는 특성을 나타냈으며, 카본블랙의 영향으로 주파수가 증가함에 따라 유전율이 감소하였고 도전율은 증가하였다. 유전체/SBS 복합재료의 유전성질과 도전체/SBS 복합재료의 주파수 의존도를 조절하여 현재 이동전화 사용 주파수 대역인 775 MHz~2 GHz 범위에서 인체의 뇌와 두개골 조직의 유전율, 도전율과 상응하는 비흡수율 측정용 팬텀 모델 재료를 제작할 수 있었다. 열기계적 반복시험에서는 충전재의 함량이 증가함에 따라 잔류변형량이 증가하였으나, 인체 조직을 모사한 SBS 복합재료는 우수한 형상 회복 성능을 보였다.
Dielectic properties and shape memory characteristics of SBS composites filled with carbon black as conductive filler and (Ba,Ca)(Sn,Ti)O3 or SrTiO3 as dielectrics were investigated for the development of phantom model. SBS/carbon black composite showed an increment of complex dielectric constant with increasing the content of carbon black and the frequency dependence that the dielectric constant decreases with the frequency. The complex dielectric constant and the conductivity of SBS/carbon black/dielectrics composites increased with the increase of dielectrics and the characteristics of the frequency dependence also occurred by the effect of carbon black. Phantom materials with the dielectic properties and the conductivity corresponding to human tissues for the measurement of specific absorption rate(SAR) within the frequency range of current mobile phones(775MHz~2GHz) could be developed by adjusting the composition ratios of carbon black, dielectics and SBS and by controlling the characteristic of frequency dependence of composite. From thermomechanical cycling test good shape recoverability could be obtained in SBS composite even though the residual strain was increased by the effect of filler.
- Goldberg RB, Creasey WA, Med. Hypotheses, 35, 265 (1991)
- Mack W, Preston-Martin S, Peters JM, Bioelectromagnetics, 12, 57 (1991)
- Tamura H, Ishikawa Y, Kobayashi T, Nojima T, IEEE Trans. Electromagn. Compat., 39, 132 (1997)
- Guy AW, IEEE Trans. Microwave Theory Tech., MTT-19, 205 (1994)
- Watanabe S, Taki M, Nojima T, Fujiwara O, IEEE Trans. Microwave Theory Tech., MTT-44, 1874 (1996)
- Yoon HG, "Development of Material Composition for Human Phantom Model", Final Report on Commission of Electronics and Telecommunications Research Institute, 1999
- Nicolson AM, IEEE Trans. Instrum. Meas., IM-19, 377 (1970)
- Yoo YS, Yoon HG, Moon TJ, Polym.(Korea), 22(3), 461 (1998)
- Maxwell JC, "Electricity and Magnetism", chap. 2, Oxford University Press, Oxford (1892)
- Paul A, Thomas S, J. Appl. Polym. Sci., 63(2), 247 (1997)
- Jonscher AK, "Dielectric Relaxation in Solids", Chelsea Dielectric, London (1983)
- Durney CH, Massouni H, Iskander MF, "Radiofrequency Radiation Dosimetry Handbook", 4th ed., chap. 3, The University of Utah, Salt Lake City (1986)
- Moon KS, Choi HD, Jung HY, Cho KY, Yoon HG, Moon TJ, Polym.(Korea), 23(5), 763 (1999)
- Choi HD, Shim HW, Cho KY, Lee HJ, Park CS, Yoon HG, J. Appl. Polym. Sci., 72(1), 75 (1999)
- Moon KS, Choi HD, Lee AK, Cho KY, Yoon HG, Suh KS, J. Appl. Polym. Sci., 77(6), 1294 (2000)
- Ku CC, Liepins R, "Electrical Properties of Polymers", p. 252, Hanser Publishers, Munich (1987)
- Federal Communications Commission (FCC), OET Bulletins 65, Edition 97-01 (1997)
- Yoo YS, "The Relationship between Structure and Shape Recoverability of Shape Memory Polyurethanes", p. 15, Ph.D. Thesis, Korea University, 1998
- Irie M, "Development and Application of Shape Memory Polymers" (Japaness), p. 24, CMC (1989)