화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.1, 133-141, January, 2001
산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성
Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6.Studies on Friction and Wear Properties of Carbon-Carbon Composites
E-mail:
초록
산화억제제로 사용한 이규화 몰리브덴(MoSi2)의 함량에 따른 일방향 탄소/탄소 복합재료의 마찰 및 마모 특성에 관하여 대기상태 하에서 정속마찰시험기를 이용하여 측정하였다. 그 결과, 탄소/탄소 복합재료는 마찰온도 150~180 ℃에서 급격한 마찰계수의 전이, 즉 normal wear 영역에서의 낮은 마찰계수(μ=0.15~0.2)에서 dusting wear 영역에서의 높은 마찰계수(μ=0.5~0.6)로의 전이를 나타내었다. 이렇게 마찰계수가 전이하는 온도범위의 존재는 탄소/탄소 복합재료로 만든 브레이크가 복합재료의 열적 특성에 큰 영향을 받는다는 것을 의미한다. 그리고 산화억제제인 MoSi2를 가지는 탄소/탄소 복합재료는 이를 함유하지 않은 복합재료에 비해 약 1.5배 정도의 낮은 평균마찰계수 및 마모율을 나타내었으며, 특히 4 wt% MoSi2 함량을 가진 복합재료가 가장 큰 마모활성화 에너지 값을 나타내었다.
The friction and wear properties of carbon-carbon composites made with different weight percent of MoSi2 as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(μ=0.15~0.2) during normal wear regime to the high-friction behavior(μ=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180℃. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without MoSi2. Especially, the composites containing 4wt% MoSi2 filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without MoSi2.
  1. Fitzer E, Carbon, 25, 163 (1987) 
  2. Buckley JD, Ceram. Bull., 67, 364 (1988)
  3. Thomas CR, "Essentials of Carbon-Carbon Composites", chap. 1, The Royal Society of Chemistry, Cambridge (1993)
  4. Buckley JD, Edie DD, "Carbon-Carbon Materials and Composites", chap 1, Noyes Publications, New Jersey (1993)
  5. Fitzer E, Huttner W, J. Phys. D.-Appl. Phys., 14, 347 (1981) 
  6. Swasthi S, Wood JL, Ceram. Eng. Sci. Proc., 9, 553 (1988)
  7. Savage G, "Carbon-Carbon Composites", chap. 6, Chapman & Hall, London, 1993
  8. Ruppe JP, Can. Aero. Space J., 26, 209 (1980)
  9. Ragan S, Emmerson GT, Carbon, 30, 339 (1992) 
  10. Park SJ, Brendle M, J. Colloid Interface Sci., 188(2), 336 (1997) 
  11. Yen BK, Ishihara T, Wear, 196, 254 (1996) 
  12. Chang HW, Rusnak RM, Carbon, 16, 309 (1978) 
  13. Jandhyala S, J. Am. Ceram. Soc., 76, 226 (1993) 
  14. Park SJ, Cho MS, Lee JR, Pak PK, Carbon, 37, 1685 (1999) 
  15. Cho MS, Park SJ, Lee JR, Pak PK, Polym.(Korea), 22(6), 987 (1998)
  16. Friedrich K, "Friction and Wear of Polymer Composites", Elsevier, p. 205, New York (1986)
  17. Awasthi S, Wood JL, Adv. Ceram. Mater., 3, 449 (1988)
  18. Chen JD, Chern Lin JH, Ju CP, Wear, 38, 193 (1996) 
  19. Sevage RH, Schaefer DL, J. Appl. Phys., 27, 136 (1956) 
  20. Chen JD, Lin JH, Ju CP, J. Mater. Sci., 31(5), 1221 (1996) 
  21. Nurdie N, Ju CP, Carbon, 29, 335 (1991) 
  22. Yen BK, Ishihara T, Wear, 174, 111 (1994) 
  23. Rhee SK, Wear, 29, 391 (1974) 
  24. Kim HS, Huh JS, J. Mater. Sci. Lett., 17(6), 501 (1998) 
  25. Trefilov VI, "Ceramic and Carbon-Matrix Composites", chap. 3, p. 385, Chapman & Hall, London, 1995
  26. Park SJ, "Interfacial Forces and Fields: Theory and Applications", ed. by J.P. Hsu, chap. 9, Marcel Dekker, New York, 1999
  27. Ju CP, Lee KJ, Wu HD, Chen CI, Carbon, 32, 971 (1994)