International Journal of Heat and Mass Transfer, Vol.99, 461-469, 2016
Systematic investigation of the misorientation- and temperature-dependent Kapitza resistance in CeO2
The misorientation- and temperature-dependent grain boundary thermal (Kapitza) resistance in CeO2 is investigated using molecular dynamics simulations. A few empirical potentials for molecular dynamics simulations are evaluated for their predicted properties such as the phonon dispersion curves, bulk thermal conductivity, and grain boundary structures. Through the comparison of these properties with experimental results, the most reasonable potential (Gotte2007) is selected. The Kapitza resistances of tilt and twist grain boundaries with misorientation angles ranging from 3 degrees to 87 degrees are calculated and a clear transition angle at about 16 degrees is observed. The Kapitza resistance is found to increase almost linearly with misorientation angle in the low-angle regime but remain nearly constant at the high-angle regime, a behavior very similar to the grain boundary energy. A nearly linear correlation between Kapitza resistance and grain boundary energy is thus obtained. Similar to the grain boundary energy, the Read-Shockley model can well describe the misorientation-dependent Kapitza resistance at low-angle regime. The Kapitza conductance (the inverse of Kapitza resistance) is found to increase almost linearly with temperature in our simulations. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Thermal conductivity;Kapitza resistance;Grain boundary;Cerium dioxide;Molecular dynamics;Misorientation angle dependence