Journal of Physical Chemistry B, Vol.120, No.45, 11773-11780, 2016
Influence of Calcium on the Initial Stages of the Sol-Gel Synthesis of Bioactive Glasses
Understanding how calcium interacts with silica sources and influences their polycondensation in aqueous solutions is of central importance for the development of more effective biomaterials by sol-gel approaches. For this purpose, the atomic-scale evolutions of a calcium-containing precursor solution corresponding to a typical sol-gel bioactive glass and of a corresponding Ca-free solution were compared using reactive molecular dynamics simulations. The simulations highlight a significantly faster rate of condensation when calcium is present in the initial solution, resulting in the formation of large and ramified silica clusters within 5 ns, which are absent in the Ca-free system. This different behavior has been analyzed and interpreted in terms of the Ca-induced nanosegregation in calcium-rich and silica-rich regions, which promotes the condensation reactions within the latter. By identifying a possible mechanism behind the limited incorporation of calcium in the silica nanoclusters formed in the early stages of the sol-gel process, these results could guide further studies aimed at identifying favorable experimental conditions to enhance initial calcium incorporation and thus produce sol-gel biomaterials with improved properties.