화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.138, No.44, 14509-14525, 2016
Plasmonically Engineered Nanoprobes for Biomedical Applications
The localized surface plasmon resonance of metal nanoparticles is the collective oscillation of electrons on particle surface, induced by incident light, and is a particle composition-, morphology-, and coupling-dependent property. Plasmonic engineering deals with highly precise formation of the targeted nanostructures with targeted plasmonic properties (e.g., electromagnetic field distribution and enhancement) via controlled synthetic, assembling, and atomic/molecular tuning strategies. These plasmonically engineered nanoprobes (PENs) have a variety of unique and beneficial physical, chemical, and biological properties, including optical signal enhancement, catalytic, and local temperature-tuning photothermal properties. In particular, for biomedical applications, there are many useful properties from PENs including LSPR-based sensing, surface-enhanced Raman scattering, metal-enhanced fluorescence, dark-field light-scattering, metal-mediated fluorescence resonance energy transfer, photothermal effect, photodynamic effect, photoacoustic effect, and plasmon-induced circular dichroism. These properties can be utilized for the development of new biotechnologies and biosensing, bioimaging, therapeutic, and theranostic applications in medicine. This Perspective introduces the concept of plasmonic engineering in designing and synthesizing PENs for biomedical applications, gives recent examples of biomedically functional PENs, and discusses the issues and future prospects of PENs for practical applications in bioscience, biotechnology, and medicine.