- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.163, No.10, F1209-F1216, 2016
Oxygen Reduction at Carbon Nanotubes (CNTs)/Cobaltous Phthalocyanine (CoPc) and MFC Electricity Generation Affected by Air-Cathode Catalyst Layer Structure
Efficient oxygen reduction reaction (ORR) catalysts - cobaltous phthalocyanine (CoPc) composited with carbon nanotubes (CNTs) were prepared for stable and high power generation in microbial fuel cells (MFCs) treating wastewater. The ORR activities of CoPc composited with CNTs [Long Single-Walled (LSW), Short single-walled (SSW), long multi-walled (LMW) and short multi-walled (SMW)] were investigated and compared. The ORR on SMW-CNTs/CoPc proceeded in a combined 2(e)(-) and 4(e)(-) pathway, while the others followed a dominant 4(e)(-) pathway, supported by the rotating disk electrode techniques and X-ray photoelectron spectroscopy. Cathodes modified with MW-CNTs/CoPc exhibited higher catalytic activity, power output and more stable internal resistance than SW-CNTs/CoPc from CV and power generation results. The Nafion layer either sank into the catalyst composite (SMW-CNTs/CoPc) or spread over it (SSW-CNTs/CoPc), affects internal resistance and MFC performance. The study demonstrated the importance of cathodic catalyst and its surface morphology for higher power generation. (C) 2016 The Electrochemical Society. All rights reserved.