화학공학소재연구정보센터
Langmuir, Vol.32, No.42, 10967-10976, 2016
Block Copolymer-Assisted Solvothermal Synthesis of Hollow Bi2MoO6 Spheres Substituted with Samarium
Hollow spherical structures of ternary bismuth molybdenum oxide doped with samarium (Bi2-xSmxMoO6) were successfully synthesized via development of a Pluronic P123 (PEO20-PPO70-PEO20)-assisted solvothermal technique. Density functional theory calculations have been performed to improve our understanding of the effects of Sm doping on the electronic band structure, density of states, and band gap of the material. The calculations for 0 <= x <= 0.3 revealed a considerably flattened conduction band minimum near the Gamma point, suggesting that the material can be considered to possess a quasi-direct band gap. In contrast, for x=.0.5, the conduction band minimum is deflected toward the U point, making it a distinctly indirect band gap material. The effects of a hollow structure as well as Sm substitution on the absorbance and fluorescence properties of the materials produced increased emission intensities at low Sm concentrations (x = 0.1 and 0.3), with x = 0.1 displaying a peak photoluminescence intensity 13.2 times higher than for the undoped bulk sample. Subsequent increases in the Sm concentration resulted in quenching of the emission intensity, indicative of the onset of a quasi-direct-to-indirect electronic band transition. These results indicate that both mesoscale structuring and Sm doping will be promising routes for tuning optoelectronic properties for future applications such as catalysis and photocatalysis.