화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.12, 1098-1104, December, 2016
Fractionation of Graphene Oxides by Size-Selective Adhesion with Spherical Particles
E-mail:,
Preparation of graphene has suffered from poor controllability of its lateral dimensions and the lack of sufficient fractionation technologies-the main barriers to its large-scale commercialization. This situation requires the development of an effective size fractionation strategy. Herein, the size-selective adsorption of graphene oxide (GO) onto positively charged spheres was developed as a novel size fractionation method. A critical lateral size of GO existed, above which physical adsorption was not stable, possibly because of the mechanical deformation involved. This scalable fractionation process easily produces well-dispersed GO sheets of relatively large lateral sizes, apart from the relatively small-sized GO sheets that are stably anchored onto the spherical particles. Moreover, this process is energy efficient and does not require any special equipment. This fractionation principle, size-selective adsorption, can be generalized to other various 2D nanomaterials.
  1. Nika DL, Ghosh S, Pokatilov EP, Balandin AA, Appl. Phys. Lett., 94, 203103 (2009)
  2. Su CY, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai CH, Huang Y, Li LJ, ACS Nano, 4, 5285 (2010)
  3. Ghosh S, Bao WZ, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA, Nat. Mater., 9(7), 555 (2010)
  4. Saltan F, Akat H, Polym. Korea, 40(2), 188 (2016)
  5. Zhao J, Pei S, Ren W, Gao L, Cheng HM, ACS Nano, 4, 5245 (2010)
  6. Chang HX, Wang GF, Yang A, Tao XM, Liu XQ, Shen YD, Zheng ZJ, Adv. Funct. Mater., 20(17), 2893 (2010)
  7. Wang X, Zhi L, Muellen K, Nano Lett., 8, 323 (2008)
  8. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2, 463 (2008)
  9. Xu Y, Sheng K, Li C, Shi G, ACS Nano, 4, 4324 (2010)
  10. Liu Z, Robinson JT, Sun XM, Dai HJ, J. Am. Chem. Soc., 130(33), 10876 (2008)
  11. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano Res., 1, 203 (2008)
  12. Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X, Chem. Commun., 47, 10016 (2011)
  13. Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y, Carbon, 47, 3365 (2009)
  14. Sun X, Luo D, Liu J, Evans DG, ACS Nano, 4, 3381 (2010)
  15. Wang XL, Bai H, Shi GQ, J. Am. Chem. Soc., 133(16), 6338 (2011)
  16. Xu J, Wang L, Zhu YF, Langmuir, 28(22), 8418 (2012)
  17. Hong J, Char K, Kim BS, J. Phys. Chem. Lett., 1, 3442 (2010)
  18. Yang S, Feng X, Ivanovici S, Mullen K, Angew. Chem.-Int. Edit., 49, 8408 (2010)
  19. Vickery JL, Patil AJ, Mann S, Adv. Mater., 21(21), 2180 (2009)
  20. Ju SA, Kim K, Kim JH, Lee SS, ACS Appl. Mater. Interfaces, 3, 2904 (2011)
  21. Stein A, Schroden RC, Curr. opin. Solid State Mat. Sci., 5, 553 (2001)
  22. Kim S, Lee SS, Lee J, Polym. Korea, 37(2), 162 (2013)
  23. Begley MR, Mackin TJ, J. Mech. Phys. Solids, 52, 2005 (2004)
  24. Imamura T, Tokiwa F, Nippon Kagaku Kaishi, 1972, 2177 (1972)
  25. Voorn DJ, Ming W, Laven J, Meuldijk J, de With G, van Herk AM, Colloids Surf. A: Physicochem. Eng. Asp., 294, 236 (2007)
  26. Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I, Chem. Mater., 18, 2740 (2006)