Macromolecular Research, Vol.24, No.12, 1098-1104, December, 2016
Fractionation of Graphene Oxides by Size-Selective Adhesion with Spherical Particles
E-mail:,
Preparation of graphene has suffered from poor controllability of its lateral dimensions and the lack of sufficient fractionation technologies-the main barriers to its large-scale commercialization. This situation requires the development of an effective size fractionation strategy. Herein, the size-selective adsorption of graphene oxide (GO) onto positively charged spheres was developed as a novel size fractionation method. A critical lateral size of GO existed, above which physical adsorption was not stable, possibly because of the mechanical deformation involved. This scalable fractionation process easily produces well-dispersed GO sheets of relatively large lateral sizes, apart from the relatively small-sized GO sheets that are stably anchored onto the spherical particles. Moreover, this process is energy efficient and does not require any special equipment. This fractionation principle, size-selective adsorption, can be generalized to other various 2D nanomaterials.
Keywords:fractionation;large-area grapheme;graphene oxide;sphere-plate adhesion;electrostatic interaction
- Nika DL, Ghosh S, Pokatilov EP, Balandin AA, Appl. Phys. Lett., 94, 203103 (2009)
- Su CY, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai CH, Huang Y, Li LJ, ACS Nano, 4, 5285 (2010)
- Ghosh S, Bao WZ, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA, Nat. Mater., 9(7), 555 (2010)
- Saltan F, Akat H, Polym. Korea, 40(2), 188 (2016)
- Zhao J, Pei S, Ren W, Gao L, Cheng HM, ACS Nano, 4, 5245 (2010)
- Chang HX, Wang GF, Yang A, Tao XM, Liu XQ, Shen YD, Zheng ZJ, Adv. Funct. Mater., 20(17), 2893 (2010)
- Wang X, Zhi L, Muellen K, Nano Lett., 8, 323 (2008)
- Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2, 463 (2008)
- Xu Y, Sheng K, Li C, Shi G, ACS Nano, 4, 4324 (2010)
- Liu Z, Robinson JT, Sun XM, Dai HJ, J. Am. Chem. Soc., 130(33), 10876 (2008)
- Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano Res., 1, 203 (2008)
- Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X, Chem. Commun., 47, 10016 (2011)
- Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y, Carbon, 47, 3365 (2009)
- Sun X, Luo D, Liu J, Evans DG, ACS Nano, 4, 3381 (2010)
- Wang XL, Bai H, Shi GQ, J. Am. Chem. Soc., 133(16), 6338 (2011)
- Xu J, Wang L, Zhu YF, Langmuir, 28(22), 8418 (2012)
- Hong J, Char K, Kim BS, J. Phys. Chem. Lett., 1, 3442 (2010)
- Yang S, Feng X, Ivanovici S, Mullen K, Angew. Chem.-Int. Edit., 49, 8408 (2010)
- Vickery JL, Patil AJ, Mann S, Adv. Mater., 21(21), 2180 (2009)
- Ju SA, Kim K, Kim JH, Lee SS, ACS Appl. Mater. Interfaces, 3, 2904 (2011)
- Stein A, Schroden RC, Curr. opin. Solid State Mat. Sci., 5, 553 (2001)
- Kim S, Lee SS, Lee J, Polym. Korea, 37(2), 162 (2013)
- Begley MR, Mackin TJ, J. Mech. Phys. Solids, 52, 2005 (2004)
- Imamura T, Tokiwa F, Nippon Kagaku Kaishi, 1972, 2177 (1972)
- Voorn DJ, Ming W, Laven J, Meuldijk J, de With G, van Herk AM, Colloids Surf. A: Physicochem. Eng. Asp., 294, 236 (2007)
- Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I, Chem. Mater., 18, 2740 (2006)