화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.1, 118-126, January, 2017
Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor
E-mail:
Bacterial L-asparaginase has been widely used as a potential therapeutic agent in the treatment of various lymphoblastic leukemia diseases. We studied product and dual substrates utilization kinetics by P. carotovorum MTCC 1428 in batch bioreactor. The kinetic study revealed that the maximum growth of P. carotovorum MTCC 1428 was achieved at 2 g l-1 and 5 g l-1 of glucose and L-asparagine, respectively. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Luong model was found to best explain the growth kinetics of P. carotovorum MTCC 1428. The kinetic parameters of growth studies showed that the predicted maximum inhibition concentration of glucose (Smg) and L-asparagine (Sma) was close to the experimentally observed value 15.0 and 10 gl-1, respectively. Modified form of the Luedeking-Piret model was used to describe the kinetics of L-asparaginase production, and the system seems to be mixed growth associated. Kinetic models of dual substrate growth, L-asparaginase production and substrate(s) utilization by P. carotovorum MTCC 1428 well fitted with experimental data with regression coefficients (R2) value of 0.97, 0.96 and 0.93, respectively.
  1. Athale UH, Chan AKC, Thromb. Res., 111, 199 (2003)
  2. Kotzia GA, Labrou NE, J. Biotechnol., 127, 657 (2007)
  3. Pedreschi F, Kaack K, Granby K, Food Chem., 109, 386 (2008)
  4. Teodor E, Litescu SC, Lazar V, Somoghi R, J. Mater. Sci. -Mater. Med., 20, 1307 (2009)
  5. Verma N, Kumar K, Kaur G, Anand S, Artif. Cells. Blood Substit. Immobil. Biotechnol., 35, 449 (2007)
  6. Narta UK, Kanwar SS, Azmi W, Crit. Rev. Oncol. Hematol., 61, 208 (2007)
  7. Wriston JC, Yellin TO, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185 (1973)
  8. Krasotkina J, Borisova AA, Gervaziev YV, Sokolov NN, Biotechnol. Appl. Biochem., 39, 215 (2004)
  9. Muller HJ, Boos J, Crit. Rev. Oncol. Hematol., 28, 97 (1998)
  10. Distasio JA, Salazar AM, Nadji M, Durden DL, Int. J. Cancer, 30, 343 (1982)
  11. Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB, Weinstein JN, Blood, 123, 3596 (2014)
  12. Zinn M, Witholt B, Egli T, J. Biotechnol., 113, 263 (2004)
  13. Kumar S, Pakshirajan K, Dasu VV, Appl. Microbiol. Biotechnol., 84(3), 477 (2009)
  14. Kumar S, Dasu VV, Pakshirajan K, Process Biochem., 45(2), 223 (2010)
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265 (1951)
  16. Haynes PA, Sheumack D, Greig LG, Kibby J, Redmond JW, J. Chromatogr. A, 588, 107 (1991)
  17. “Biochemical engineering fundamentals / Bailey JE, Ollis DF - Version details, Trove. (2016).
  18. Shuler ML, Kargı F, Bioprocess engineering: basic concepts, Prentice Hall (1992).
  19. Bouguettoucha A, Balannec B, Nacef S, Amrane A, Enzyme Microb. Technol., 41(3), 377 (2007)
  20. Yano T, Koga S, Biotechnol. Bioeng., 11, 139 (1969)
  21. Luong JH, Biotechnol. Bioeng., 29, 242 (1987)
  22. Gokulakrishnan S, Gummadi SN, Process Biochem., 41(6), 1417 (2006)
  23. Luedeking R, Piret EL, J. Biochem. Microbiol. Technol. Eng., 1, 393 (1959)
  24. Guerra NP, Agrasar AT, Macias CL, Bernardez PF, Castro LP, J. Food Eng., 82(2), 103 (2007)
  25. Lasdon LS, Waren AD, Jain A, Ratner M, ACM Trans Math Sofrw, 3, 34 (1978)
  26. Kumar S, Prabhu AA, Dasu VV, Pakshirajana K, Prep. Biochem. BIotech., DOI:10.1080/10826068.2016.1168841. (2016)
  27. Mukherjee J, Majumdar S, Scheper T, Appl. Microbiol. Biotechnol., 53(2), 180 (2000)
  28. Callewaert R, Vuyst LD, Appl. Environ. Microbiol., 66, 606 (2000)
  29. Albanese E, Kafkewitz K, Appl. Environ. Microbiol., 36, 25 (1978)
  30. Khamna S, Yokota A, Lumyong S, Int. J. Integr. Biol., 6, 22 (2009)
  31. Shah AJ, Karadi RV, Parekh PP, Asian J. Biotechnol., 2, 169 (2010)
  32. Liu FS, Zajic JE, Appl. Microbiol. Biotechnol., 25, 92 (1973)
  33. Geckil H, Gencer S, Uckun M, Enzyme Microb. Technol., 35(2-3), 182 (2004)
  34. Heinemann B, Howard AJ, Appl. Microbiol. Biotechnol., 18, 550 (1969)
  35. Abdel-Fattah YR, Olama ZA, Process Biochem., 38(1), 115 (2002)
  36. Prakasham RS, Rao CS, Rao RS, Lakshmi GS, Sarma PN, J. Appl. Microbiol., 102(5), 1382 (2007)
  37. He Q, Li N, Chen X, Ye Q, Bai J, Xiong J, Ying H, Korean J. Chem. Eng., 28(2), 544 (2011)
  38. Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A, 3Biotech., 5, 663 (2015)
  39. Tosa T, Sano R, Yamamoto K, Nakamura M, Ando K, Appl. Microbiol. Biotechnol., 22, 387 (1971)
  40. Sun DX, Setlow P, J. Bacteriol., 173, 3831 (1991)