Korean Journal of Chemical Engineering, Vol.34, No.1, 199-205, January, 2017
Parametric studies for CO2 reforming of methane in a membrane reactor as a new CO2 utilization process
E-mail:
A one-dimensional reactor model was employed to perform parametric studies for CO2 reforming of methane in a membrane reactor to investigate its feasibility as a new CO2 utilization process. The effect of key variables such as hydrogen permeance and Ar sweep gas flow rate to facilitate H2 transport from a shell side (retentate) to a tube side (permeate) on the performance in a membrane reactor was studied at various temperatures with numerical simulation validated by experimental results. In addition, increase in CH4 conversion and H2 yield enhancement observed in membrane reactor was successfully confirmed by profiles of H2 partial pressure difference between shell and tube sides. From the numerical simulation studies, the feasibility of using a membrane reactor for CO2 reforming of methane was confirmed by increased CH4 conversion and H2 yield enhancement compared to a packed-bed reactor at the same condition, which in turn leads to significant cost reductions due to a reduced operating temperature. Moreover, a window of H2 permeance and a guideline for Ar sweep gas flow rate for the efficient membrane reactor design was obtained from this study.
- Thomas JM, Thomas WJ, Heterogeneous catalysis, VCH, Weinheim (1997).
- Seong M, Shin M, Cho JH, Lee YC, Park YK, Jeon JK, Korean J. Chem. Eng., 31(3), 412 (2014)
- Lee HJ, Shin GS, Kim YC, Korean J. Chem. Eng., 32(7), 1267 (2015)
- Marcano JGS, Tsotsis TT, Catalytic membranes and membrane reactors, WILEY-VCH, Weinheim (2002).
- Lee D, Hacarlioglu P, Oyama ST, Top. Catal., 29, 45 (2004)
- Irusta S, Munera J, Carrara C, Lombardo EA, Cornaglia LM, Appl. Catal. A: Gen., 287(2), 147 (2005)
- Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, AIChE J., 50(11), 2794 (2004)
- Hacarlioglu P, Gu Y, Oyama ST, J. Nat. Gas Chem., 15, 73 (2006)
- Tong JH, Matsumura Y, Appl. Catal. A: Gen., 286(2), 226 (2005)
- Patil CS, Annaland MVS, Kuipers JAM, Chem. Eng. Sci., 62(11), 2989 (2007)
- Kikuchi E, Kawabe S, Matsukata M, J. Jpn. Pet. Inst., 46, 93 (2003)
- Lee DW, Nam SE, Sea B, Ihm SK, Lee KH, Catal. Today, 118(1-2), 198 (2006)
- Basile A, Gallucci F, Paturzo L, Catal. Today, 104(2-4), 244 (2005)
- Lim H, Gu YF, Oyama ST, J. Membr. Sci., 351(1-2), 149 (2010)
- Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 250 (2008)
- Vasileiadis S, Ziaka Z, Tsimpa M, Int. Trans. J. Eng. Manag. Sci. Technol., 2, 129 (2011)
- Vasileiadis S, Ziaka-Vasileiadou Z, Chem. Eng. Sci., 59(22-23), 4853 (2004)
- Ziaka Z, Membrane reactors for fuel cells and environmental energy systems, Xlibris, USA (2009).
- Vasileiadis S, Ziaka Z, J. Nano Res., 12, 105 (2010)
- Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng. J., 93(1), 23 (2003)
- Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
- Brunetti A, Barbieri G, Drioli E, Lee KH, Sea B, Lee DW, Chem. Eng. Process., 46(2), 119 (2007)
- Brunetti A, Caravella A, Barbieri G, Drioli E, J. Membr. Sci., 306(1-2), 329 (2007)
- Barbieri G, Brunetti A, Tricoli G, Drioli E, J. Power Sources, 182(1), 160 (2008)
- Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, Madeira LM, Int. J. Hydrog. Energy, 35(22), 12596 (2010)
- Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356 (2011)
- Zhang YT, Wu ZJ, Hong Z, Gu XH, Xu NP, Chem. Eng. J., 197, 314 (2012)
- Cornaglia CA, Tosti S, Sansovini M, Munera J, Lombardo EA, Appl. Catal. A: Gen., 462-463, 278 (2013)
- Cornaglia CA, Adrover ME, Munera JF, Pedernera MN, Borio DO, Lombardo EA, Int. J. Hydrog. Energy, 38(25), 10485 (2013)
- Lim H, Korean J. Chem. Eng., 32(8), 1522 (2015)
- Majidian N, Habibi N, Rezaei M, Korean J. Chem. Eng., 31(7), 1162 (2014)
- Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Allahyari S, Korean J. Chem. Eng., 31(9), 1553 (2014)
- Prabhu AK, Oyama ST, J. Membr. Sci., 176(2), 233 (2000)
- Prabhu AK, Liu A, Lovell LG, Oyama ST, J. Membr. Sci., 177(1-2), 83 (2000)
- Gallucci F, Tosti S, Basile A, J. Membr. Sci., 317(1-2), 96 (2008)
- Bosko ML, Munera JF, Lombardo EA, Cornaglia LM, J. Membr. Sci., 364(1-2), 17 (2010)
- Li JL, Yoon H, Wachsman ED, Int. J. Hydrog. Energy, 37(24), 19125 (2012)
- Garcia-Garcia FR, Soria MA, Mateos-Pedrero C, Guerrero-Ruiz A, Rodriguez-Ramos I, Li K, J. Membr. Sci., 435, 218 (2013)
- Munera J, Faroldi B, Frutis E, Lombardo E, Cornaglia L, Carrazan SG, Appl. Catal. A: Gen., 474, 114 (2014)
- Sumrunronnasak S, Tantayanon S, Kiatgamolchai S, Sukonket T, Int. J. Hydrog. Energy, 41(4), 2621 (2016)
- Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351 (2009)
- Lim H, Clean Technol., 20(4), 425 (2014)
- Alamdari A, J. Nat. Gas Sci. Eng., 27, 934 (2015)
- Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293 (1990)
- Fogler HS, Essentials of Chemical Reaction Engineering, Pearson Education, Inc., New Jersey (2010).