화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.12, 721-725, December, 2016
Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics
E-mail:
This work focuses on the electrical conduction mechanism in a lead free (Na0.5K0.5NbO3 ; NKN) ceramics system with LiNbO3 content of approximately critical concentration x ≥ 0.2. Lead free (1-x)(Na0.5K0.5)NbO3 - x(LiNbO3), NKN-LNx (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient k p decreases and the phase transition temperature Tc increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ε' and kBTε'' showed anomalies around Tc (462 °C in the NKN-LN0.1 and 500 °C in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as EI = 1.76 eV (NKN-LN0.1) and EI = 1.55 eV (NKN-LN0.2), above Tc, and EII = 0.78 (NKNLN0.1) and EII = 0.81 (NKN-LN0.2) below Tc. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of Li+ ions.
  1. Xu Y, Ferroelectric Materials and Their Applicarions, North-Holland (1991).
  2. Guo Y, Kakimoto K, Ohsato H, Solid State Commun., 129, 279 (2004)
  3. Matubara M, Yamaguchi T, Kikuta K, Hirano S, Jpn. J. Appl. Phys., 44, 258 (2005)
  4. Jaffe B, Roth RS, Marzullo S, J. Appl. Phys., 25, 809 (1954)
  5. Ouchi H, Nagano K, Hayakawa S, J. Am. Ceram. Soc., 48, 630 (1965)
  6. Park SE, Shout TR, J. Appl. Phys., 42, 6086 (2003)
  7. Sugaya Y, Shoji K, Koichiro, Jpn. J. Appl. Phys., 42, 6086 (2003)
  8. Yu Z, Guo R, Bhalla AS, J. Mater. Lett., 57, 349 (2002)
  9. Nagata H, Taketaka T, Jpn. J. Appl. Phys., 36, 6055 (1997)
  10. Guo Y, Kakimoto K, Ohsato H, Appl. Phys. Lett., 85, 4121 (2004)
  11. Park HY, Ahn CW, Song HC, Lee JH, Nahm S, Appl. Phys. Lett., 89, 062906 (2006)
  12. No YW, Yoo YB, Son SM, Chung ST, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 717 (2006)
  13. Dai Y, Zhzng X, Zhou G, Appl. Phys. Lett., 90, 262903 (2007)
  14. Guo Y, Kakimoto K, Ohsato H, Jpn. J. Appl. Phys., 43, 6662 (2004)
  15. Guo Y, Kakimoto K, Ohsato H, Mater. Lett., 59, 241 (2005)
  16. Park SH, Ahn CW, Nahm S, Song JS, Jpn. J. Appl. Phys., 43, 1072 (2004)
  17. Ramajo I, Parra R, Ramirez MA, Castro MS, Bull. Mat. Sci., 34, 1213 (2011)
  18. Park HY, Cho KH, Paik DS, Nahm S, Lee HG, Kim DH, J. Appl. Phys., 124101, 102 (2007)
  19. Ahn ZS, Schulze WA, J. Am. Ceram. Soc., 70, 18 (1987)
  20. Guo Y, Kakimoto K, Ohsato H, Appl. Phys. Lett., 85, 4121 (2004)
  21. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M, Nature, 432, 84 (2004)
  22. Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF, J. Appl. Phys., 100, 104108 (2006)
  23. Zang GZ, Wang JF, Chen HC, Su WB, Wang CM, Qi P, Ming BQ, Du J, Zheng LM, Zhang SJ, Shrout TR, Appl. Phys. Lett., 88, 212908 (2006)
  24. Park HJ, Park HJ, Choi BC, Trans. Electr. Electron. Mater., 13, 297 (2012)
  25. Wang RP, Xie RJ, Sekiya T, Shimojo Y, Mater. Res. Bull., 39(11), 1709 (2004)
  26. Matsubara M, Yamaguchi T, Kikuta K, Hirano S, Jpn. J. Appl. Phys., 44, 258 (2005)
  27. Dekker AJ, Solid State Physics, Macmillan (1969).