화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 314-319, February, 2017
X-ray absorption spectroscopies of Mg-Al-Ni hydrotalcite like compound for explaining the generation of surface acid sites
E-mail:
Hydrotalcite-like compound containing metal cations such as Mg2+, Al3+ and Ni2+ was characterized using Ni K-edge EXAFS and in situ Ni K-edge XANES techniques for clarifying its bonding environment around Ni2+ sites and structure changes during calcination from room temperature to 550 °C, respectively. At the fixed molar ratio of Mg/Ni/Al of 2/1/1, the results obtained from EXAFS analysis showed a slight blue shift before and after the calcination at 550 °C and a reduction in white line peak; the best fits of the two samples revealed tiny change in coordination number about 7 for Ni-O path but considerable difference for Ni-Mg(Al) path from about 4.5 to 9.5, confirming a modification from brucite like to mixed oxide structure. On the other hand, bond distances of the Ni-O and Ni-Mg paths nearly fixed at about 2.06 Å to 3.0 Å reflected stability of the cationic bond order on each plane, but partial collapse and decomposition of the interlayer formed by water molecules and anion CO3 2- after the calcination. Linear combination fit extracted from the in situ Ni K-edge XANES also confirmed the changes along with the calcination such as slow and fast decreases of brucite fraction at 150 °C and 330 °C, respectively, in corresponding to the mixed oxide fraction increases. The achieved bonding structures were also applied to explain acid-base occurrence of the hydrotalcite-like material, especially the acid sites generated by different static charges along with the bonds. The explanation was illustrated by NH3-TPD method.
  1. Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
  2. Wang Q, Huang TH, Guo Z, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A, Appl. Clay Sci., 55, 18 (1991)
  3. Albertazzi S, Basile F, Vaccari A, Interface Sci. Technol., 1, 496 (2004)
  4. Casenave S, Martinez H, Guimon C, Auroux A, Hulea V, Cordoneanu A, Dumitriu E, Thermochim. Acta, 379(1-2), 85 (2001)
  5. Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77 (2006)
  6. Khitous M, Salem Z, Halliche D, Korean J. Chem. Eng., 33(2), 638 (2016)
  7. Kikhtyanin O, Hora L, Kubicka D, Catal. Commun., 58, 89 (2015)
  8. Lucredio AF, Bellido JDA, Assaf EM, Appl. Catal. A: Gen., 388(1-2), 77 (2010)
  9. Romero A, Jobbagy M, Laborde M, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 470, 398 (2014)
  10. Yu J, Li JY, Wei HL, Zheng JW, Su HQ, Wang XJ, J. Mol. Catal. A-Chem., 395, 128 (2014)
  11. Zhang J, Wu S, Liu Y, Li B, Catal. Commun., 35, 23 (2013)
  12. Na JG, Yi BE, Kim JN, Yi KB, Park SY, Park JH, Kim JN, Ko CH, Catal. Today, 156(1-2), 44 (2010)
  13. Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH, Catal. Today, 185(1), 313 (2012)
  14. Roh HS, Eum IH, Jeong DW, Yi BE, Na JG, Ko CH, Catal. Today, 164(1), 457 (2011)
  15. Nguyen HKD, Pham VV, Do HT, Catal. Lett., DOI:10.1007/s10562-016-1873-8., 146 (2016)
  16. Gac W, Appl. Surf. Sci., 257(7), 2875 (2011)
  17. Tanabe K, Solid acids and bases: Their catalytic properties, Kodansha Ltd. (1970).
  18. Nguyen HKD, Nguyen TD, J. Porous Mat., DOI:10.1007/s10934-016-0279-8. (2016)
  19. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E, J. Phys. Chem., 100(20), 8527 (1996)
  20. Rehr J, Kas J, Prange M, Sorini A, Takimoto Y, Vila F, Comptes Rendus Physique, 10, 548 (2009)
  21. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X, Environ. Sci. Technol., 45, 7718 (2011)
  22. Downs RT, Bartelmehs KL, Gibbs GV, American Mineralogist, 78, 1104 (1993)
  23. Daza CE, Gallego J, Mondragon F, Moreno S, Molina R, Fuel, 89(3), 592 (2010)
  24. Obalova L, Valaskova M, Kovanda F, Lacny Z, Kolinova K, Chem. Papers, 58, 33 (2004)
  25. Tanabe K, Misono M, Ono Y, Hattori H, Studies in Surface Science and Catalysis, 51 (1989).