Korean Journal of Chemical Engineering, Vol.34, No.2, 314-319, February, 2017
X-ray absorption spectroscopies of Mg-Al-Ni hydrotalcite like compound for explaining the generation of surface acid sites
E-mail:
Hydrotalcite-like compound containing metal cations such as Mg2+, Al3+ and Ni2+ was characterized using Ni K-edge EXAFS and in situ Ni K-edge XANES techniques for clarifying its bonding environment around Ni2+ sites and structure changes during calcination from room temperature to 550 °C, respectively. At the fixed molar ratio of Mg/Ni/Al of 2/1/1, the results obtained from EXAFS analysis showed a slight blue shift before and after the calcination at 550 °C and a reduction in white line peak; the best fits of the two samples revealed tiny change in coordination number about 7 for Ni-O path but considerable difference for Ni-Mg(Al) path from about 4.5 to 9.5, confirming a modification from brucite like to mixed oxide structure. On the other hand, bond distances of the Ni-O and Ni-Mg paths nearly fixed at about 2.06 Å to 3.0 Å reflected stability of the cationic bond order on each plane, but partial collapse and decomposition of the interlayer formed by water molecules and anion CO3 2- after the calcination. Linear combination fit extracted from the in situ Ni K-edge XANES also confirmed the changes along with the calcination such as slow and fast decreases of brucite fraction at 150 °C and 330 °C, respectively, in corresponding to the mixed oxide fraction increases. The achieved bonding structures were also applied to explain acid-base occurrence of the hydrotalcite-like material, especially the acid sites generated by different static charges along with the bonds. The explanation was illustrated by NH3-TPD method.
- Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
- Wang Q, Huang TH, Guo Z, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A, Appl. Clay Sci., 55, 18 (1991)
- Albertazzi S, Basile F, Vaccari A, Interface Sci. Technol., 1, 496 (2004)
- Casenave S, Martinez H, Guimon C, Auroux A, Hulea V, Cordoneanu A, Dumitriu E, Thermochim. Acta, 379(1-2), 85 (2001)
- Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77 (2006)
- Khitous M, Salem Z, Halliche D, Korean J. Chem. Eng., 33(2), 638 (2016)
- Kikhtyanin O, Hora L, Kubicka D, Catal. Commun., 58, 89 (2015)
- Lucredio AF, Bellido JDA, Assaf EM, Appl. Catal. A: Gen., 388(1-2), 77 (2010)
- Romero A, Jobbagy M, Laborde M, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 470, 398 (2014)
- Yu J, Li JY, Wei HL, Zheng JW, Su HQ, Wang XJ, J. Mol. Catal. A-Chem., 395, 128 (2014)
- Zhang J, Wu S, Liu Y, Li B, Catal. Commun., 35, 23 (2013)
- Na JG, Yi BE, Kim JN, Yi KB, Park SY, Park JH, Kim JN, Ko CH, Catal. Today, 156(1-2), 44 (2010)
- Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH, Catal. Today, 185(1), 313 (2012)
- Roh HS, Eum IH, Jeong DW, Yi BE, Na JG, Ko CH, Catal. Today, 164(1), 457 (2011)
- Nguyen HKD, Pham VV, Do HT, Catal. Lett., DOI:10.1007/s10562-016-1873-8., 146 (2016)
- Gac W, Appl. Surf. Sci., 257(7), 2875 (2011)
- Tanabe K, Solid acids and bases: Their catalytic properties, Kodansha Ltd. (1970).
- Nguyen HKD, Nguyen TD, J. Porous Mat., DOI:10.1007/s10934-016-0279-8. (2016)
- Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E, J. Phys. Chem., 100(20), 8527 (1996)
- Rehr J, Kas J, Prange M, Sorini A, Takimoto Y, Vila F, Comptes Rendus Physique, 10, 548 (2009)
- Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X, Environ. Sci. Technol., 45, 7718 (2011)
- Downs RT, Bartelmehs KL, Gibbs GV, American Mineralogist, 78, 1104 (1993)
- Daza CE, Gallego J, Mondragon F, Moreno S, Molina R, Fuel, 89(3), 592 (2010)
- Obalova L, Valaskova M, Kovanda F, Lacny Z, Kolinova K, Chem. Papers, 58, 33 (2004)
- Tanabe K, Misono M, Ono Y, Hattori H, Studies in Surface Science and Catalysis, 51 (1989).